【題目】如圖,三棱柱中,側(cè)面
為菱形,
.
(1)證明:;
(2)若,
,
,求二面角
的余弦值的絕對(duì)值.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
(1)連接,交
于點(diǎn)
,連接
,證明
且
平分
得到答案.
(2)為坐標(biāo)原點(diǎn),
的方向?yàn)?/span>
軸正方向,
為單位長(zhǎng),建立空間直角坐標(biāo)
,計(jì)算相應(yīng)點(diǎn)坐標(biāo),計(jì)算法向量,利用二面角公式計(jì)算得到答案.
證明:(1)連接,交
于點(diǎn)
,連接
,
因?yàn)閭?cè)面為菱形,
所以,且
為
與
的中點(diǎn),又
,所以
平面
.
由于平面
,故
.
又,故
.
(2)因?yàn)?/span>,且
為
的中點(diǎn),所以
.
又因?yàn)?/span>,所以
,故
,從而
兩兩相互垂直,
為坐標(biāo)原點(diǎn),
的方向?yàn)?/span>
軸正方向,
為單位長(zhǎng),建立空間直角坐標(biāo)
因?yàn)?/span>,所以
為等邊三角形,又
,則
設(shè)是平面
的法向量,則
,即
所以
.
設(shè)是平面
的法向量,則
,同理可取
,
,所以二面角
的余弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),設(shè)
的兩個(gè)極值點(diǎn)為
,
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的可導(dǎo)函數(shù)滿足
,記
的導(dǎo)函數(shù)為
,當(dāng)
時(shí)恒有
.若
,則m的取值范圍是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)的產(chǎn)品的直徑均位于區(qū)間
內(nèi)(單位:
).若生產(chǎn)一件產(chǎn)品
的直徑位于區(qū)間
內(nèi)該廠可獲利分別為10,30,20,10(單位:元),現(xiàn)從該廠生產(chǎn)的產(chǎn)品
中隨機(jī)抽取200件測(cè)量它們的直徑,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計(jì)該廠生產(chǎn)一件
產(chǎn)品的平均利潤(rùn);
(2)現(xiàn)用分層抽樣法從直徑位于區(qū)間內(nèi)的產(chǎn)品中隨機(jī)抽取一個(gè)容量為5的樣本,從樣本中隨機(jī)抽取兩件產(chǎn)品進(jìn)行檢測(cè),求兩件產(chǎn)品中至多有一件產(chǎn)品的直徑位于區(qū)間
內(nèi)的槪率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐O﹣ABCD中,底面ABCD四邊長(zhǎng)為1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M為OA的中點(diǎn),N為BC的中點(diǎn).
(1)證明:直線MN∥平面OCD;
(2)求異面直線AB與MD所成角的大小;
(3)求點(diǎn)B到平面OCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示在四棱錐中,下底面
為正方形,平面
平面
,
為以
為斜邊的等腰直角三角形,
,若點(diǎn)
是線段
上的中點(diǎn).
(1)證明平面
.
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系,直線
過(guò)點(diǎn)
,且傾斜角為
,以
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)求直線的參數(shù)方程和圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與圓
交于
、
兩點(diǎn),若
,求直線
的傾斜角的
值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定橢圓,稱圓心在坐標(biāo)原點(diǎn)O,半徑為
的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個(gè)焦點(diǎn)分別是
.
(1)若橢圓C上一動(dòng)點(diǎn)滿足
,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過(guò)點(diǎn)作直線l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C的“伴隨圓”所得弦長(zhǎng)為
,求P點(diǎn)的坐標(biāo);
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過(guò)兩點(diǎn)
的直線的最短距離
.若存在,求出a,b的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com