日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若關(guān)于x,y,z的三元一次方程組有唯一組解,則θ的集合是   
          【答案】分析:先把方程①②組合求出y=;再把②③組合求出x==;再結(jié)合方程組有唯一組解得到分母不等于0即可求出θ的集合.
          解答:解:對(duì)關(guān)于x,y,z的三元一次方程組的三個(gè)方程從上到下記為:①②③.
          則②-①得:y(sinθ-1)=1⇒y=
          ③-②得:x(sin2θ-1)=1⇒x==;
          因?yàn)椋骸鄐inθ-1≠0且sinθ+1≠0⇒θ≠kπ+,k∈Z.
          故答案為:{θ|θ≠kπ+,k∈Z}.
          點(diǎn)評(píng):本題主要考查方程組的求解.在解三元一次方程組時(shí),一般是兩個(gè)兩個(gè)相結(jié)合求出方程組的解.解決本題的關(guān)鍵在于知道唯一組解時(shí),所求的解需滿足什么條件.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若對(duì)任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”;
          (1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
          (2)對(duì)稱性:f(x,y)=f(y,x);
          (3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
          今給出三個(gè)二元函數(shù),請(qǐng)選出所有能夠成為關(guān)于x、y的廣義“距離”的序號(hào):
          ①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③f(x,y)=
          x-y

          能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的序號(hào)是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          本題有(1)、(2)、(3)三個(gè)選答題,每小題7分,請(qǐng)考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.
          (1)選修4-2:矩陣與變換
          已知矩陣A=
          12
          34

          ①求矩陣A的逆矩陣B;
          ②若直線l經(jīng)過(guò)矩陣B變換后的方程為y=x,求直線l的方程.
          (2)選修4-4:坐標(biāo)系與參數(shù)方程
          已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為
          x=1+2cosα
          y=-1+2sinα
          (a為參數(shù)),點(diǎn)Q極坐標(biāo)為(2,
          7
          4
          π).
          (Ⅰ)化圓C的參數(shù)方程為極坐標(biāo)方程;
          (Ⅱ)若點(diǎn)P是圓C上的任意一點(diǎn),求P、Q兩點(diǎn)距離的最小值.
          (3)選修4-5:不等式選講
          (I)關(guān)于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范圍.
          (II)設(shè)x,y,z∈R,且
          x2
          16
          +
          y2
          5
          +
          z2
          4
          =1
          ,求x+y+z的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若對(duì)任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x,y的二元函數(shù).
          定義:滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x,y的廣義“距離”:
          (1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
          (2)對(duì)稱性:f(x,y)=f(y,x);
          (3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
          給出三個(gè)二元函數(shù):①f(x,y)=(x-y)2;②f(x,y)=|x-y|; ③f(x,y)=
          x-y

          請(qǐng)選出所有能夠成為關(guān)于x,y的廣義“距離”的序號(hào)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•晉中三模)若對(duì)任意的x∈A,y∈B,(A⊆R,B⊆R),有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”:
          (1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
          (2)對(duì)稱性:f(x,y)=f(y,x);
          (3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
          今給出下列四個(gè)二元函數(shù):①f(x,y)=|x-y|;  ②f(x,y)=(x-y)2;
          f(x,y)=
          x-y
          ; ④f(x,y)=x2+y2
          能夠稱為關(guān)于實(shí)數(shù)x、y的廣義“距離”的函數(shù)的序號(hào)是
          ①④
          ①④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011年福建省福州三中高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

          若對(duì)任意x∈A,y∈B,(A⊆R,B⊆R)有唯一確定的f(x,y)與之對(duì)應(yīng),則稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”;
          (1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào);
          (2)對(duì)稱性:f(x,y)=f(y,x);
          (3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對(duì)任意的實(shí)數(shù)z均成立.
          今給出三個(gè)二元函數(shù),請(qǐng)選出所有能夠成為關(guān)于x、y的廣義“距離”的序號(hào):
          ①f(x,y)=|x-y|;②f(x,y)=(x-y)2;③
          能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的序號(hào)是   

          查看答案和解析>>

          同步練習(xí)冊(cè)答案