(本題滿分16分,第1小題5分,第2小題6分,第3小題5分)
已知函數(shù),其中
為常數(shù),且
(1)若是奇函數(shù),求
的取值集合A;
(2)(理)當(dāng)時,設(shè)
的反函數(shù)為
,且函數(shù)
的圖像與
的圖像關(guān)于
對稱,求
的取值集合B;
(文)當(dāng)時,求
的反函數(shù);
(3)(理)對于問題(1)(2)中的A、B,當(dāng)時,不等式
恒成立,求
的取值范圍。
(文)對于問題(1)中的A,當(dāng)時,不等式
恒成立,求
的取值范圍。
(1)
(2)(理)B={—4}
(文)
(3)(理)x的取值范圍為{1,4}
(文)x的取值范圍為{1,4}
【解析】解:(1)由必要條件,
所以, ………………2分
下面證充分性,當(dāng),
任取
=0恒成立……………………2分
由……………………1分
(2)(理)當(dāng)
得
互換x,y得………………1分
從而
所以……………………2分
即B={—4} ……………………1分
(文)當(dāng)a=1時,
其值域是……………………3分
得互換x,y
得……………………3分
(3)(理)原問題轉(zhuǎn)化為
恒成立
則 ……………………2分
或
則x的取值范圍為{1,4}……………………2分
(文)原問題轉(zhuǎn)化為
,
恒成立
則 ……………………2分
或
則x的取值范圍為{1,4}……………………2分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分,第一小題8分;第二小題8分)
已知是
軸正方向的單位向量,設(shè)
=
,
=
,且滿足
.
求點的軌跡方程;
過點的直線
交上述軌跡于
兩點,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高三第三次月考試題文科數(shù)學(xué) 題型:解答題
. (本題滿分16分,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分)
已知公差大于零的等差數(shù)列的前
項和為
,且滿足
,
,
(1)求數(shù)列的通項公式;
(2)若數(shù)列是等差數(shù)列,且
,求非零常數(shù)
;
(3)若(2)中的的前
項和為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市長寧區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題
(本題滿分16分,第(1)小題4分,第(2)小題6分,第(2)小題6分)
在平行四邊形中,已知過點
的直線與線段
分別相交于點
。若
。
(1)求證:與
的關(guān)系為
;
(2)設(shè),定義在
上的偶函數(shù)
,當(dāng)
時
,且函數(shù)
圖象關(guān)于直線
對稱,求證:
,并求
時的解析式;
(3)在(2)的條件下,不等式在
上恒成立,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(理) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第(3)小題6分)
設(shè)、
為坐標(biāo)平面
上的點,直線
(
為坐標(biāo)原點)與拋物線
交于點
(異于
).
(1)
若對任意,點
在拋物線
上,試問當(dāng)
為何值時,點
在某一圓上,并求出該圓方程
;
(2)
若點在橢圓
上,試問:點
能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說明理由;
(3)
對(1)中點所在圓方程
,設(shè)
、
是圓
上兩點,且滿足
,試問:是否存在一個定圓
,使直線
恒與圓
相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿分16分,第一小題8分;第二小題8分)
已知是
軸正方向的單位向量,設(shè)
=
,
=
,且滿足
.
(1)
求點的軌跡方程;
(2)
過點的直線
交上述軌跡于
兩點,且
,求直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com