日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】環(huán)保部門要對所有的新車模型進行廣泛測試,以確定它的行車?yán)锍痰牡燃,右表是?100 輛新車模型在一個耗油單位內(nèi)行車?yán)锍蹋▎挝唬汗铮┑臏y試結(jié)果.

          (Ⅰ)做出上述測試結(jié)果的頻率分布直方圖,并指出其中位數(shù)落在哪一組;

          (Ⅱ)用分層抽樣的方法從行車?yán)锍淘趨^(qū)間[38,40)與[40,42)的新車模型中任取5輛,并從這5輛中隨機抽取2輛,求其中恰有一個新車模型行車?yán)锍淘赱40,42)內(nèi)的概率.

          【答案】(Ⅰ)圖略,中位數(shù)在區(qū)間.(Ⅱ)

          【解析】

          1)畫出頻率分布直方圖后,找到頻率總和為時對應(yīng)的分組區(qū)間;

          2)先利用分層抽樣計算每組內(nèi)抽取的輛數(shù),然后對車輛進行標(biāo)記,利用古典概型計算目標(biāo)事件的概率.

          (Ⅰ)由題意可畫出頻率分布直方圖如圖所示:

          組頻率總和為,第組頻率為,且 ,則由圖可知,中位數(shù)在區(qū)間.

          (Ⅱ)由題意,設(shè)從中選取的車輛為,從中選取的車輛為,

          則從這5輛車中抽取2輛的所有情況有10種,分別為,

          其中符合條件的有6種,,所以所求事件的概率為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐中,已知平面是邊長為的正三角形,分別為、的中點.

          1)若,求直線所成角的余弦值;

          2)若平面平面,求的長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直五棱柱,中,,,.

          1)證明:平面;

          2)求平面與平面所成銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測數(shù)據(jù),結(jié)果統(tǒng)計如下:

          空氣質(zhì)量

          優(yōu)

          輕度污染

          中度污染

          重度污染

          嚴(yán)重污染

          天數(shù)

          6

          14

          18

          27

          25

          10

          1)從空氣質(zhì)量指數(shù)屬于的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;

          2)已知某企業(yè)每天的經(jīng)濟損失(單位:元)與空氣質(zhì)量指數(shù)的關(guān)系式為,試估計該企業(yè)一個月(按30天計算)的經(jīng)濟損失的數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)若,求的單調(diào)區(qū)間;

          2)證明:(i;

          ii)對任意,恒成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的焦距為2,過點.

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)設(shè)橢圓的右焦點為F,定點,過點F且斜率不為零的直線l與橢圓交于AB兩點,以線段AP為直徑的圓與直線的另一個交點為Q,證明:直線BQ恒過一定點,并求出該定點的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為常數(shù), ,函數(shù), (其中是自然對數(shù)的底數(shù)).

          (1)過坐標(biāo)原點作曲線的切線,設(shè)切點為,求證: ;

          (2)令,若函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線恰有一個公共點.

          (Ⅰ)求曲線的極坐標(biāo)方程;

          (Ⅱ)已知曲線上兩點,滿足,求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點處的切線互相平行,則x1+x2的取值范圍為

          A. ,+∞) B. ,+∞) C. [,+∞) D. [,+∞)

          查看答案和解析>>

          同步練習(xí)冊答案