日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分14分)

          為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:

           

          喜愛打籃球

          不喜愛打籃球

          合計

          男生

           

          5

           

          女生

          10

           

           

          合計

           

           

          50

          已知在全部50人中隨機抽取1人抽到喜愛打籃球的學(xué)生的概率為

          (1)請將上面的列聯(lián)表補充完整;

          (2)是否有99.5%的把握認為喜愛打籃球與性別有關(guān)?說明你的理由;

          (3)已知喜愛打籃球的10位女生中,還喜歡打羽毛球,還喜歡打乒乓球,還喜歡踢足球,現(xiàn)再從喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的女生中各選出1名進行其他方面的調(diào)查,求不全被選中的概率.

          下面的臨界值表供參考:

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

           (參考公式:,其中

           

          【答案】

           

          (1)略

          (2) 有99.5%的把握認為喜愛打籃球與性別有關(guān).

          (3)

          【解析】

          解:(1) 列聯(lián)表補充如下:-----------------------------------------------------3分

           

          喜愛打籃球

          不喜愛打籃球

          合計

          男生

          20

          5[來源:ZXXK]

          25

          女生

          10

          15

          25

          合計

          30

          20

          50

          (2)∵------------------------5分

          ∴有99.5%的把握認為喜愛打籃球與性別有關(guān).------------------------------------------6分

          (3)從10位女生中選出喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結(jié)果組成的基本事件如下:

          ,

          表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于, 5個基本事件組成,

          所以,---------------------------------------------------------------------------------11分

          由對立事件的概率公式得.--------------------------------------12分

           

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分14分
          A.選修4-4:極坐標與參數(shù)方程在極坐標系中,直線l 的極坐標方程為θ=
          π
          3
          (ρ∈R ),以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C的參數(shù)方程為
          x=2cosα
          y=1+cos2α
          (α 參數(shù)).求直線l 和曲線C的交點P的直角坐標.
          B.選修4-5:不等式選講
          設(shè)實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點,且BF⊥平面ACE

          (1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

          (本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

          (Ⅰ)若AB=[0,3],求實數(shù)m的值

          (Ⅱ)若ACRB,求實數(shù)m的取值范圍

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

          (本題滿分14分)

          已知點是⊙上的任意一點,過垂直軸于,動點滿足

          (1)求動點的軌跡方程; 

          (2)已知點,在動點的軌跡上是否存在兩個不重合的兩點,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

          (本題滿分14分)已知函數(shù).

          (1)求函數(shù)的定義域;

          (2)判斷的奇偶性;

          (3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

          ;如果沒有,請說明理由?(注:區(qū)間的長度為).

           

          查看答案和解析>>

          同步練習(xí)冊答案