日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 正方體ABCD-A1B1C1D1的棱長為2,MN是它的內(nèi)切球的一條弦(我們把球面上任意兩點之間的線段稱為球的弦),P為正方體表面上的動點,當弦MN的長度最大時,的取值范圍是   
          【答案】分析:根據(jù)題意,可設M、N分別是內(nèi)切球在正方體左、右側(cè)面的切點,運動點P并加以觀察,可得當P與正方體的某個頂點重合時,達到最大值;當P與正方體某個面的中心重合時,達到最小值.由此結(jié)合數(shù)量積的計算公式,即可得到數(shù)量積的取值范圍.
          解答:解:根據(jù)題意,MN是正方體內(nèi)切球的最大弦長
          ∴MN是內(nèi)切球的直徑
          設M、N分別是內(nèi)切球在正方體左、右側(cè)面的切點,如圖
          當P在正方體表面運動,它與正方體的某個頂點重合時,達到最大值.
          以C1點為例,此時
          ==cos∠∠MC1N=2=(2=2;
          當點P與正方體某個面的中心重合時,達到最小值.
          此時,得=0
          綜上所述,得數(shù)量積的取值范圍為[0,2]
          故答案為:[0,2]
          點評:本題給出正方體的內(nèi)切球,求一個數(shù)量積的取值范圍.著重考查了平面向量數(shù)量積的運算和正方體的性質(zhì)等知識,屬于基礎題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          正方體ABCD-A1B1C1D1的各頂點均在半徑為1的球面上,則四面體A1-ABC的體積等于
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖是從上下底面處在水平狀態(tài)下的棱長為a的正方體ABCD-A1B1C1D1中分離出來的:
          (1)試判斷A1是否在平面B1CD內(nèi);(回答是與否)
          (2)求異面直線B1D1與C1D所成的角;
          (3)如果用圖示中這樣一個裝置來盛水,那么最多可以盛多少體積的水.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知邊長為6的正方體ABCD-A1B1C1D1,E,F(xiàn)為AD、CD上靠近D的三等分點,H為BB1上靠近B的三等分點,G是EF的中點.
          (1)求A1H與平面EFH所成角的正弦值;
          (2)設點P在線段GH上,
          GP
          GH
          =λ,試確定λ的值,使得二面角P-C1B1-A1的余弦值為
          10
          10

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖所示,在棱長為2cm的正方體ABCD-A1B1C1D1中,A1B1的中點是P,過點A1作出與截面PBC1平行的截面,簡單證明截面形狀,并求該截面的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,正方體ABCD-A1B1C1D1中,M是棱AB的中點,過A1,M,C三點的平面與CD所成角正弦值(  )

          查看答案和解析>>

          同步練習冊答案