日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,S是正方形ABCD所在平面外一點(diǎn),且SD⊥面ABCD,AB=1,SB=
          3

          (1)求證:BC⊥SC;
          (2)求面ASD與面BSC所成二面角的大。
          分析:(1)由底面ABCD是正方形,知BC⊥DC.由SD⊥底面ABCD,知SD⊥BC,由此能夠證明BC⊥SC.
          (2)由SD⊥底面ABCD,且ABCD為正方形,可把四棱錐S-ABCD補(bǔ)形為長(zhǎng)方體A1B1C1S-ABCD,面ASD與面BSC所成的二面角就是面ADSA1與面BCSA1所成的二面角,由此能求出面ASD與面BSC所成的二面角.
          解答:(1)證明:∵底面ABCD是正方形,∴BC⊥DC.
          ∵SD⊥底面ABCD,∴SD⊥BC,又DC∩SD=D,
          ∴BC⊥平面SDC,∴BC⊥SC;
          (2)解:∵SD⊥底面ABCD,且ABCD為正方形,
          ∴可把四棱錐S-ABCD補(bǔ)形為長(zhǎng)方體A1B1C1S-ABCD,
          如圖2,面ASD與面BSC所成的二面角就是面ADSA1與面BCSA1所成的二面角,
          ∵SC⊥BC,BC∥A1S,∴SC⊥A1S,
          又SD⊥A1S,∴∠CSD為所求二面角的平面角.
          在Rt△SCB中,由勾股定理得SC=
          2
          ,
          在Rt△SDC中,由勾股定理得SD=1.
          ∴∠CSD=45°,即面ASD與面BSC所成的二面角為45°.
          點(diǎn)評(píng):本題考查異面直線垂直的證明,考查二面角的大小的求法,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,S是正方形ABCD所在平面外一點(diǎn),且SD⊥面ABCD,AB=1,SB=
          3

          (1)求證:BC⊥SC;
          (2)設(shè)M為棱SA中點(diǎn),求異面直線DM與SB所成角的大小
          (3)求面ASD與面BSC所成二面角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,S是正方形ABCD所在平面外一點(diǎn),且SD⊥面ABCD,AB=1,SB=數(shù)學(xué)公式
          (1)求證:BC⊥SC;
          (2)求面ASD與面BSC所成二面角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都七中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,S是正方形ABCD所在平面外一點(diǎn),且SD⊥面ABCD,AB=1,SB=
          (1)求證:BC⊥SC;
          (2)求面ASD與面BSC所成二面角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都七中高二(上)10月段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          如圖,S是正方形ABCD所在平面外一點(diǎn),且SD⊥面ABCD,AB=1,SB=
          (1)求證:BC⊥SC;
          (2)設(shè)M為棱SA中點(diǎn),求異面直線DM與SB所成角的大小
          (3)求面ASD與面BSC所成二面角的大。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案