日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 證明一個角的平分線的平行射影不一定是該角平行射影的角平分線.

          3-1-5

          證明:設(shè)OC為∠AOB的平分線,在OC上任取一點(diǎn)P,作PD⊥OA于D,PE⊥OB于E.

          顯然必存在一平面α∥PD而不平行于PE,將該角向平面α作正射影,

          則PD=P′D′,PE>P′E′.

          ∵PD=PE,

          ∴P′D′>P′E′,即P′不在∠A′O′B′的角平分線上.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)若橢圓的方程是:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0),它的左、右焦點(diǎn)依次為F1、F2,P是橢圓上異于長軸端點(diǎn)的任意一點(diǎn).在此條件下我們可以提出這樣一個問題:“設(shè)△PF1F2的過P角的外角平分線為l,自焦點(diǎn)F2引l的垂線,垂足為Q,試求Q點(diǎn)的軌跡方程?”
          對該問題某同學(xué)給出了一個正確的求解,但部分解答過程因作業(yè)本受潮模糊了,我們在
          精英家教網(wǎng)
          這些模糊地方劃了線,請你將它補(bǔ)充完整.
          解:延長F2Q 交F1P的延長線于E,據(jù)題意,
          E與F2關(guān)于l對稱,所以|PE|=|PF2|.
          所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=
           
          ,
          在△EF1F2中,顯然OQ是平行于EF1的中位線,
          所以|OQ|=
          1
          2
          |EF1|=
           

          注意到P是橢圓上異于長軸端點(diǎn)的點(diǎn),所以Q點(diǎn)的軌跡是
           
          ,
          其方程是:
           

          (2)如圖2,雙曲線的方程是:
          x2
          a2
          -
          y2
          b2
          =1(a,b>0),它的左、右焦點(diǎn)依次為F1、F2,P是雙曲線上異于實(shí)軸端點(diǎn)的任意一點(diǎn).請你試著提出與(1)類似的問題,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•山東)橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>0,b>0)
          的左右焦點(diǎn)分別是F1,F(xiàn)2,離心率為
          3
          2
          ,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
          (1)求橢圓C的方程;
          (2)點(diǎn)P是橢圓C上除長軸端點(diǎn)外的任一點(diǎn),連接PF1,PF2,設(shè)∠F1PF2的角平分線PM交C的長軸于點(diǎn)M(m,0),求m的取值范圍;
          (3)在(2)的條件下,過點(diǎn)P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點(diǎn),設(shè)直線PF1,PF2的斜率分別為k1,k2,若k≠0,試證明
          1
          kk1
          +
          1
          kk2
          為定值,并求出這個定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年普通高等學(xué)校招生全國統(tǒng)一考試(山東卷)、理科數(shù)學(xué) 題型:044

          橢圓C:的左、右焦點(diǎn)分別是F1.F2,離心率為過F,且垂直于x軸的直線被橢圓C截得的線段長為l

          (Ⅰ)求橢圓C的方程;

          (Ⅱ)點(diǎn)P是橢圓C上除長軸端點(diǎn)外的任一點(diǎn),連接PF1,PF2,設(shè)∠F1PF2的角平分線PM交C的長軸于點(diǎn)M(m,0),求m的取值范圍;

          (Ⅲ)在(Ⅱ)的條件下,過點(diǎn)p作斜率為k的直線l,使得l與橢圓C有且只有一個公共點(diǎn).

          設(shè)直線PF1,PF2的斜率分別為k1,k2,若k≠0,試證明為定值,并求出這個定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(山東卷解析版) 題型:解答題

          橢圓的左、右焦點(diǎn)分別是,離心率為,過且垂直于軸的直線被橢圓截得的線段長為

          (Ⅰ)求橢圓的方程;

          (Ⅱ)點(diǎn)是橢圓上除長軸端點(diǎn)外的任一點(diǎn),連接,設(shè)的角平分線的長軸于點(diǎn),求的取值范圍;

          (Ⅲ)在(Ⅱ)的條件下,過點(diǎn)作斜率為的直線,使與橢圓有且只有一個公共點(diǎn),設(shè)直線的斜率分別為。若,試證明為定值,并求出這個定值。

           

          查看答案和解析>>

          同步練習(xí)冊答案