日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】是拋物線為上的一點,以S為圓心,r為半徑做圓,分別交x軸于A,B兩點,連結(jié)并延長SA、SB,分別交拋物線于C、D兩點.

          求拋物線的方程.

          求證:直線CD的斜率為定值.

          【答案】(1);(2)定值,證明見解析

          【解析】

          (1)將點(1,1)代入y2=2pxp>0),解得p,即可得出.

          (2)設(shè)直線SA的方程為:y﹣1=kx﹣1),Cx1,y1).與拋物線方程聯(lián)立,利用根與系數(shù)的關(guān)系可得C坐標. 由題意有SASB,可得直線SB的斜率為﹣k,同理可得D坐標,再利用向量計算公式即可得出.

          將點代入,得,解得

          拋物線方程為:

          證明:設(shè)直線SA的方程為:

          聯(lián)立,聯(lián)立得:

          ,

          ,

          由題意有,直線SB的斜率為,

          設(shè)直線SB的方程為:,

          聯(lián)立,聯(lián)立得:,

          ,

          ,

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          (1)若,且直線是曲線的一條切線,求實數(shù)的值;

          (2)若不等式對任意恒成立,求的取值范圍;

          (3)若函數(shù)有兩個極值點,,且,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某校高一年級學(xué)生全部參加了體育科目的達標測試,現(xiàn)從中隨機抽取40名學(xué)生的測試成績,整理數(shù)據(jù)并按分數(shù)段進行分組,假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,則得到體育成績的折線圖如圖.

          (1)體育成績大于或等于70分的學(xué)生常被稱為“體育良好”.已知該校高一年級有1000名學(xué)生,試估計高一年級中“體育良好”的學(xué)生人數(shù);

          (2)為分析學(xué)生平時的體育活動情況,現(xiàn)從體育成績在的樣本學(xué)生中隨機抽取2人,求在抽取的2名學(xué)生中,至少有1人體育成績在的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】是拋物線為上的一點,以S為圓心,r為半徑做圓,分別交x軸于A,B兩點,連結(jié)并延長SA、SB,分別交拋物線于C、D兩點.

          求拋物線的方程.

          求證:直線CD的斜率為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正四棱錐的側(cè)棱和底面邊長相等,在這個正四棱錐的條棱中任取兩條,按下列方式定義隨機變量的值:

          若這兩條棱所在的直線相交,則的值是這兩條棱所在直線的夾角大。ɑ《戎疲;

          若這兩條棱所在的直線平行,則

          若這兩條棱所在的直線異面,則的值是這兩條棱所在直線所成角的大小(弧度制).

          (1)求的值;

          (2)求隨機變量的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右有頂點分別是,上頂點是,圓的圓心到直線的距離是,且橢圓的右焦點與拋物線的焦點重合.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)平行于軸的動直線與橢圓和圓在第一象限內(nèi)的交點分別為、,直線、軸的交點記為,.試判斷是否為定值,若是,證明你的結(jié)論.若不是,舉反例說明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)求函數(shù)的定義域;

          (2)若函數(shù)的最小值為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知:函數(shù),.

          1)當時,求的值域;

          2)求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給出下列命題,其中所有正確命題的序號是__________

          ①拋物線的準線方程為;

          ②過點作與拋物線只有一個公共點的直線僅有1條;

          是拋物線上一動點,以為圓心作與拋物線準線相切的圓,則此圓一定過定點.

          ④拋物線上到直線距離最短的點的坐標為.

          查看答案和解析>>

          同步練習(xí)冊答案