日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知曲線C:x2+y2-2x-4y+m=0.
          (1)當m為何值時,曲線C表示圓;
          (2)若曲線C與直線x+2y-4=0交于M、N兩點,且OM⊥ON(O為坐標原點),求m的值.
          分析:(1)由二元二次方程表示圓的條件D2+E2-4F大于0列出關于m的不等式,求出不等式的解集即可得到m的取值范圍;
          (2)設出曲線與直線的交點M和N的坐標,聯(lián)立曲線C與直線的方程,消去y后得到關于x的一元二次方程,利用韋達定理表示出兩根之和與兩根之積,然后由OM與ON垂直得到直線OM與ON斜率的乘積為-1,即M和N橫坐標之積與縱坐標之積的和為0,由直線方程化為橫坐標的關系式,把表示出的兩根之和與兩根之積代入即可求出m的值.
          解答:解:(1)由D2+E2-4F=4+16-4m=20-4m>0,解得m<5;     (4分)
          (2)設M(x1,y1),N(x2,y2),
          聯(lián)立直線x+2y-4=0與圓的方程x2+y2-2x-4y+m=0,
          消去y,得:5x2-8x+4m-16=0,
          由韋達定理得:x1+x2=
          8
          5
          ①,x1x2=
          4m-16
          5
          ②,
          又由x+2y-4=0得y=
          1
          2
          (4-x)
          ,
          由OM⊥ON得x1x2+y1y2=0,
          x1x2+y1y2=x1x2+
          1
          4
          (4-x1)•(4-x2)=
          5
          4
          x1x2-(x1+x2)+4=0
          ,
          將①、②代入上式得 m=
          8
          5
          ,
          檢驗知滿足△>0,故m=
          8
          5
          為所求. (13分)
          點評:此題考查了直線與圓相交的性質(zhì),以及二元二次方程表示圓的條件,在解答直線與圓相交的問題時,常常設出交點坐標,聯(lián)立直線與圓的方程,消去一個未知數(shù)后得到關于另外一個未知數(shù)的方程,利用韋達定理來解決問題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知曲線C:x2-y|y|=1.
          (1)畫出曲線C的圖象,
          (2)若直線l:y=x+m與曲線C有兩個公共點,求m的取值范圍;
          (3)若過點P(0,2)的直線與曲線C在x軸上方的部分交于不同的兩點M,N,求t=
          OM
          OP
          +
          OM
          PN
          的范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2006•浦東新區(qū)模擬)已知曲線C:x2-y|y|=1(|x|≤4).
          (1)畫出曲線C的圖象,
          (2)若直線l:y=kx-1與曲線C有兩個公共點,求k的取值范圍;
          (3)若P(0,p)(p>0),Q為曲線C上的點,求|PQ|的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知曲線C:x2-y|y|=1(|x|≤4).
          (1)畫出曲線C的圖象,
          (2)(文)若直線l:y=x+m與曲線C有兩個公共點,求m的取值范圍;
          (理)若直線l:y=kx-1與曲線C有兩個公共點,求k的取值范圍;
          (3)若P(0,p)(p>0),Q為曲線C上的點,求|PQ|的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知曲線C:x2-y|y|=1.
          (1)畫出曲線C的圖象,
          (2)若直線l:y=x+m與曲線C有兩個公共點,求m的取值范圍;
          (3)若過點P(0,2)的直線與曲線C在x軸上方的部分交于不同的兩點M,N,求t=
          OM
          OP
          +
          OM
          PN
          的范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2007年上海市徐匯區(qū)零陵中學高三3月綜合練習數(shù)學試卷(五)(解析版) 題型:解答題

          已知曲線C:x2-y|y|=1(|x|≤4).
          (1)畫出曲線C的圖象,
          (2)(文)若直線l:y=x+m與曲線C有兩個公共點,求m的取值范圍;
          (理)若直線l:y=kx-1與曲線C有兩個公共點,求k的取值范圍;
          (3)若P(0,p)(p>0),Q為曲線C上的點,求|PQ|的最小值.

          查看答案和解析>>

          同步練習冊答案