日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)數(shù)學(xué)公式(其中n為常數(shù),n∈N*),將函數(shù)fn(x)的最大值記為an,由an構(gòu)成的數(shù)列{an}的前n項(xiàng)和記為Sn
          (Ⅰ)求Sn
          (Ⅱ)若對(duì)任意的n∈N*,總存在x∈R+使數(shù)學(xué)公式,求a的取值范圍;
          (Ⅲ)比較數(shù)學(xué)公式與an的大小,并加以證明.

          解:(Ⅰ),(2分)
          令fn′(x)>0,則x<en+1-n.
          ∴fn(x)在(-n,en+1-n)上遞增,在(en+1-n,+∞)上遞減.(4分)
          ∴當(dāng)x=en+1-n時(shí),(5分)
          ,
          .(6分)
          (Ⅱ)∵n≥1,∴en+1遞增,n(n+1)遞增,
          遞減.

          (8分)
          ,則
          ∴g(x)在(0,1)上遞增,在(1,+∞)上遞減.
          當(dāng)x→0時(shí),;
          當(dāng)x→+∞時(shí),;
          又g(1)=1+a,
          ∴g(x)∈(a,1+a](10分)
          由已知得,(a,1+a]?,
          (11分)
          (Ⅲ)
          =
          =
          =(12分)

          在[1,+∞)上遞減.

          (13分)
          (14分)

          (15分)
          分析:(Ⅰ),令fn′(x)>0,則x<en+1-n.所以fn(x)在(-n,en+1-n)上遞增,在(en+1-n,+∞)上遞減.由此能求出Sn
          (Ⅱ)由n≥1,知en+1遞增,n(n+1)遞增,遞減.所以,令,則,故g(x)在(0,1)上遞增,在(1,+∞)上遞減.由此入手能夠求出a的取值范圍.
          (Ⅲ)作差相減,得,整理為,令,能夠推導(dǎo)出
          點(diǎn)評(píng):本題考查導(dǎo)數(shù)在函數(shù)最值中的應(yīng)用,考查運(yùn)算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.對(duì)數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強(qiáng),難度大,易出錯(cuò).解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意培養(yǎng)運(yùn)算能力,注意作差法的合理運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)數(shù)學(xué)公式,其中t為常數(shù),且t>0.
          (Ⅰ)求函數(shù)ft(x)在(0,+∞)上的最大值;
          (Ⅱ)數(shù)列{an}中,a1=3,a2=5,其前n項(xiàng)和Sn滿足Sn+Sn-2=2Sn-1+2n-1(n≥3),且設(shè)數(shù)學(xué)公式,證明:對(duì)任意的x>0,數(shù)學(xué)公式,n=1,2,….

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知函數(shù)數(shù)學(xué)公式(其中t為常數(shù)且t≠0).
          (I)求證:數(shù)列數(shù)學(xué)公式為等差數(shù)列;
          (II)求數(shù)列{an}的通項(xiàng)公式;
          (III)設(shè)數(shù)學(xué)公式,求數(shù)列{bn}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省信陽(yáng)高中高三第一次大考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知函數(shù)(其中t為常數(shù)且t≠0).
          (I)求證:數(shù)列為等差數(shù)列;
          (II)求數(shù)列{an}的通項(xiàng)公式;
          (III)設(shè),求數(shù)列{bn}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省信陽(yáng)高中高三第一次大考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知函數(shù)(其中t為常數(shù)且t≠0).
          (I)求證:數(shù)列為等差數(shù)列;
          (II)求數(shù)列{an}的通項(xiàng)公式;
          (III)設(shè),求數(shù)列{bn}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010年陜西省咸陽(yáng)市禮泉一中高三5月最后一次預(yù)測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù),其中t為常數(shù),且t>0.
          (Ⅰ)求函數(shù)ft(x)在(0,+∞)上的最大值;
          (Ⅱ)數(shù)列{an}中,a1=3,a2=5,其前n項(xiàng)和Sn滿足Sn+Sn-2=2Sn-1+2n-1(n≥3),且設(shè),證明:對(duì)任意的x>0,,n=1,2,….

          查看答案和解析>>

          同步練習(xí)冊(cè)答案