日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)y=
          1
          x2-ax-a
          [-2,-
          1
          2
          ]
          上單調(diào)遞增,那么a的取值范圍是(  )
          A、a≥-1
          B、-4<a<
          1
          2
          C、-1≤a<
          1
          2
          D、a>
          1
          2
          分析:利用函數(shù)在某個(gè)區(qū)間上單調(diào)遞增的條件是此函數(shù)的導(dǎo)數(shù)在此區(qū)間上大于或等于0,得到a-2x≥0在[-2,-
          1
          2
          ]
          上恒成立,故a-2•(-
          1
          2
          )≥0,從而求得a的取值范圍.
          解答:解:由題意知,y=
          a-2x
          (x2-ax-a)2
           在[-2,-
          1
          2
          ]
          上大于或等于0,
          故 a-2x≥0在[-2,-
          1
          2
          ]
          上恒成立.而 a-2x 在[-2,-
          1
          2
          ]
          上是個(gè)減函數(shù),
          ∴a-2•(-
          1
          2
          )≥0,a≥-1.
          故選A.
          點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,函數(shù)在某個(gè)區(qū)間上單調(diào)遞增的條件是此函數(shù)的導(dǎo)數(shù)在此區(qū)間上大于或等于0.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=x+
          a
          x
          有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
          a
          ]上是減函數(shù),在[
          a
          ,+∞)上是增函數(shù).
          (Ⅰ)如果函數(shù)y=x+
          2b
          x
          (x>0)的值域?yàn)閇6,+∞),求b的值;
          (Ⅱ)研究函數(shù)y=x2+
          c
          x2
          (常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并說明理由;
          (Ⅲ)對(duì)函數(shù)y=x+
          a
          x
          和y=x2+
          a
          x2
          (常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)F(x)=(x2+
          1
          x
          n+(
          1
          x2
          +x
          n(n是正整數(shù))在區(qū)間[
          1
          2
          ,2]上的最大值和最小值(可利用你的研究結(jié)論).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知
          lim
          x→1
          x2+ax+2
          x-1
          =b
          ,則函數(shù)y=-x2+ax+b單調(diào)遞減區(qū)間是
          [-
          3
          2
          ,+∞
          [-
          3
          2
          ,+∞

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)y=x+
          a
          x
          (x>0)有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
          a
          ]上是減函數(shù),在[
          a
          ,+∞)上是增函數(shù).
          (1)如果函數(shù)y=x+
          b2
          x
          (x>0)的值域?yàn)閇6,+∞),求b的值;
          (2)研究函數(shù)y=x2+
          c
          x2
          (x>0,常數(shù)c>0)在定義域內(nèi)的單調(diào)性,并用定義證明(若有多個(gè)單調(diào)區(qū)間,請(qǐng)選擇一個(gè)證明);
          (3)對(duì)函數(shù)y=x+
          a
          x
          和y=x2+
          a
          x2
          (x>0,常數(shù)a>0)作出推廣,使它們都是你所推廣的函數(shù)的特例.研究推廣后的函數(shù)的單調(diào)性(只須寫出結(jié)論,不必證明),并求函數(shù)F(x)=(x2+
          1
          x
          )2
          +(
          1
          x2
          +x)2
          在區(qū)間[
          1
          2
          ,2]上的最大值和最小值(可利用你的研究結(jié)論).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          函數(shù)y=
          1
          x2-ax-a
          [-2,-
          1
          2
          ]
          上單調(diào)遞增,那么a的取值范圍是( 。
          A.a(chǎn)≥-1B.-4<a<
          1
          2
          C.-1≤a<
          1
          2
          D.a>
          1
          2

          查看答案和解析>>

          同步練習(xí)冊(cè)答案