【題目】在“數(shù)學(xué)發(fā)展史”知識測驗(yàn)后,甲、乙、丙三人對成績進(jìn)行預(yù)測:
甲說:我的成績比乙高;
乙說:丙的成績比我和甲的都高;
丙說:我的成績比乙高.
成績公布后,三人成績互不相同且只有一個人預(yù)測正確,那么三人中預(yù)測正確的是________.
【答案】甲.
【解析】
本題可從三人預(yù)測中互相關(guān)聯(lián)的乙、丙兩人的預(yù)測入手,因?yàn)橹挥幸粋人預(yù)測正確,而乙對則丙必對,丙對乙很有可能對,假設(shè)丙對乙錯則會引起矛盾故只有一種情況就是甲預(yù)測正確乙、丙錯誤,即可求得答案.
由題意,可把三人的預(yù)測簡寫如下:
甲:甲乙.
乙:丙乙且丙
甲.
丙:丙乙.
只有一個人預(yù)測正確,
分析三人的預(yù)測,可知:乙、丙的預(yù)測不正確.
如果乙預(yù)測正確,則丙預(yù)測正確,不符合題意.
如果丙預(yù)測正確,假設(shè)甲、乙預(yù)測不正確,
則有丙乙,乙
甲,乙預(yù)測不正確,而丙
乙正確,
只有丙
甲不正確,
甲
丙,這與丙
乙,乙
甲矛盾,不符合題意.
只有甲預(yù)測正確,乙、丙預(yù)測不正確,甲
乙,乙
丙.
三人中預(yù)測正確的是:甲.
故答案為:甲.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
若
,
,試證明:當(dāng)
時,
;
若對任意
,
均有兩個極值點(diǎn)
,
試求b應(yīng)滿足的條件;
當(dāng)
時,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)f(x)=4x2-2(t-2)x-2t2-t+1在區(qū)間[-1,1]內(nèi)至少存在一個值m,使得f(m)>0,則實(shí)數(shù)t的取值范圍( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了
人進(jìn)行分析,得到如下列聯(lián)表(單位:人).
經(jīng)常使用 | 偶爾使用或不使用 | 合計(jì) | |
| |||
| |||
合計(jì) |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認(rèn)為
市使用共享單車的情況與年齡有關(guān);
(2)(i)現(xiàn)從所選取的歲以上的網(wǎng)友中,采用分層抽樣的方法選取
人,再從這
人中隨機(jī)選出
人贈送優(yōu)惠券,求選出的
人中至少有
人經(jīng)常使用共享單車的概率;
(ii)將頻率視為概率,從市所有參與調(diào)查的網(wǎng)友中隨機(jī)選取
人贈送禮品,記其中經(jīng)常使用共享單車的人數(shù)為
,求
的數(shù)學(xué)期望和方差.
參考公式:,其中
.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),
,
,數(shù)列
的前
項(xiàng)和
,點(diǎn)
(
)均在函數(shù)
的圖像上.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),
是數(shù)列
的前
項(xiàng)和,求滿足
(
)的最大正整數(shù)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了積極支持雄安新區(qū)建設(shè),某投資公司計(jì)劃明年投資1000萬元給雄安新區(qū)甲、乙兩家科技企業(yè),以支持其創(chuàng)新研發(fā)計(jì)劃,經(jīng)有關(guān)部門測算,若不受中美貿(mào)易戰(zhàn)影響的話,每投入100萬元資金,在甲企業(yè)可獲利150萬元,若遭受貿(mào)易戰(zhàn)影響的話,則將損失50萬元;同樣的情況,在乙企業(yè)可獲利100萬元,否則將損失20萬元,假設(shè)甲、乙兩企業(yè)遭受貿(mào)易戰(zhàn)影響的概率分別為0.6和0.5.
(1)若在甲、乙兩企業(yè)分別投資500萬元,求獲利1250萬元的概率;
(2)若在兩企業(yè)的投資額相差不超過300萬元,求該投資公司明年獲利約在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(CUA)∩B;
(2)若A∩C≠,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com