日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)設(shè)一次函數(shù)f(x)滿足f(3)=2,f(2)=3,求f(5)的值;
          (2)若函數(shù)f(x)的定義域?yàn)閇a,b],值域?yàn)閇a,b](a<b),則稱函數(shù)f(x)是[a,b]上的“方正”函數(shù).
          ①設(shè)數(shù)學(xué)公式是[a,b]上的“方正”函數(shù),求常數(shù)a,b的值.
          ②問是否存在常數(shù)a,b(a>-2),使函數(shù)數(shù)學(xué)公式是區(qū)間[a,b]上的“方正”函數(shù)?若存在,求出a,b的值;不存在,說明理由.

          解:(1)設(shè)f(x)=mx+n(m≠0),又f(3)=2,f(2)=3,
          所以3m+n=2,2m+n=3?m=-1,n=5
          即f(x)=-x+5?f(5)=0;
          (2)①由知g(x)在[a,b]上單調(diào)增函數(shù)且a≥1,
          所以值域?yàn)閇g(a),g(b)],
          由已知是[1,b]上的“方正”函數(shù),所以[g(a),g(b)]=[a,b]
          則g(a)=a,g(b)=b,即a,b是方程g(x)=x的兩個(gè)根(1≤a<b)
          解方程得x=1或x=3,所以a=1,b=3
          ②假設(shè)存在常數(shù)a,b,使函數(shù)是區(qū)間[a,b]上的“方正”函數(shù).
          因a>-2,顯然在區(qū)間[a,b]上是單調(diào)減函數(shù),值域?yàn)閇h(b),h(a)]=[a,b],
          與a<b矛盾,
          故不存在常數(shù)a,b,使函數(shù)是區(qū)間[a,b]上的“方正”函數(shù).
          分析:(1)直接設(shè)出函數(shù)解析式,根據(jù)已知條件列出方程求出解析式即可得到結(jié)論.
          (2))①先由知g(x)在[a,b]上單調(diào)增函數(shù)且a≥1,再結(jié)合“方正”函數(shù)的定義得到g(a)=a,g(b)=b,即a,b是方程g(x)=x的兩個(gè)根;解方程即可求出常數(shù)a,b的值.
          ②根據(jù)a>-2,得到在區(qū)間[a,b]上是單調(diào)減函數(shù),值域?yàn)閇h(b),h(a)]=[a,b],解對應(yīng)的方程組求出a=b與a<b矛盾即可得到結(jié)論.
          點(diǎn)評:本題主要是在新定義下對函數(shù)單調(diào)性應(yīng)用的考查,考查計(jì)算能力以及分析問題的能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)一次函數(shù)f(x)=ax+b,其中a,b為實(shí)數(shù),f1(x)=f(x),fn+1(x)=f(fn(x)),n=1,2,3,…,若f5(x)=32x+31,則f2008(-1)=
          -1
          -1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)一次函數(shù)f(x)的圖象關(guān)于直線y=x對稱的圖象為C,且f(-1)=0.若點(diǎn)(n+1,
          an+1
          an
          )(n∈N*)在曲線C上,并且a1=a2=1.
          (1)求曲線C的方程;?
          (2)求數(shù)列{an}的通項(xiàng)公式;?
          (3)設(shè)Sn=
          a1
          2!
          +
          a2
          3!
          +…+
          an
          (n+1)!
          ,求Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)設(shè)一次函數(shù)f(x)滿足f(3)=2,f(2)=3,求f(5)的值;
          (2)若函數(shù)f(x)的定義域?yàn)閇a,b],值域?yàn)閇a,b](a<b),則稱函數(shù)f(x)是[a,b]上的“方正”函數(shù).
          ①設(shè)g(x)=
          1
          2
          x2-x+
          3
          2
          是[a,b]上的“方正”函數(shù),求常數(shù)a,b的值.
          ②問是否存在常數(shù)a,b(a>-2),使函數(shù)h(x)=
          1
          x+2
          是區(qū)間[a,b]上的“方正”函數(shù)?若存在,求出a,b的值;不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (1)設(shè)一次函數(shù)f(x)滿足f(3)=2,f(2)=3,求f(5)的值;
          (2)若函數(shù)f(x)的定義域?yàn)閇a,b],值域?yàn)閇a,b](a<b),則稱函數(shù)f(x)是[a,b]上的“方正”函數(shù).
          ①設(shè)g(x)=
          1
          2
          x2-x+
          3
          2
          是[a,b]上的“方正”函數(shù),求常數(shù)a,b的值.
          ②問是否存在常數(shù)a,b(a>-2),使函數(shù)h(x)=
          1
          x+2
          是區(qū)間[a,b]上的“方正”函數(shù)?若存在,求出a,b的值;不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案