日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若函數(shù)y=x3-
          32
          x2+a在[-1,1]上有最大值3,則該函數(shù)在[-1,1]上的最小值是
           
          分析:本題是典型的利用函數(shù)的導(dǎo)數(shù)求最值的問題,只需要利用已知函數(shù)的最大值為3,進(jìn)而求出常數(shù)a的值,即可求出函數(shù)的最小值.
          解答:解:由已知,f′(x)=3x2-3x,有3x2-3x≥0得x≥1或x≤0,
          因此當(dāng)x∈[1,+∞),(-∞,0]時(shí)f(x)為增函數(shù),在x∈[0,1]時(shí)f(x)為減函數(shù),
          又因?yàn)閤∈[-1,1],
          所以得當(dāng)x∈[-1,0]時(shí)f(x)為增函數(shù),在x∈[0,1]時(shí)f(x)為減函數(shù),
          所以f(x)max=f(0)=a=3,故有f(x)=x3-
          3
          2
          x2+3
          所以f(-1)=
          1
          2
          ,f(1)=
          5
          2

          因?yàn)閒(-1)=
          1
          2
          <f(1)=
          5
          2
          ,所以函數(shù)f(x)的最小值為f(-1)=
          1
          2

          故答案為:
          1
          2
          點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,求函數(shù)在閉區(qū)間[a,b]上的最大值與最小值是通過比較函數(shù)在(a,b)內(nèi)所有極值與端點(diǎn)函數(shù)f(a),f(b) 比較而得到的,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          定義:兩個(gè)連續(xù)函數(shù)(圖象不間斷)f(x)、g(x)在區(qū)間[a,b]上都有意義,則稱函數(shù)|f(x)+g(x)|在[a,b]上的最大值叫做函數(shù)f(x)與g(x)在區(qū)間[a,b]上的“絕對(duì)和”.已知函數(shù)f(x)=x3,g(x)=x3-3ax2+2.
          (Ⅰ)若函數(shù)y=g(x)在點(diǎn)P(1,g(1))處的切線與直線y=x+2平行,求a的值;
          (Ⅱ)在(Ⅰ)的條件下求漢順f(x)與g(x)在區(qū)間[0,2]上的“絕對(duì)值”
          (Ⅲ)記f(x)與g(x)在區(qū)間[0,2]上的“絕對(duì)和”為h(a),a>
          32
          ,且h(a)=2,試求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (理科)已知函數(shù)f(x)=alnx-ax-3(a∈R).
          (1)討論函數(shù)f(x)的單調(diào)性;
          (2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)任意的t∈[1,2],若函數(shù)g(x)=x3+x2[f/(x)+
          m
          2
          ]
          在區(qū)間(t,3)上有最值,求實(shí)數(shù)m取值范圍;
          (3)求證:ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*
          (文科) 已知函數(shù)f(x)=ax3+
          1
          2
          x2-2x+c

          (1)若x=-1是f(x)的極值點(diǎn)且f(x)的圖象過原點(diǎn),求f(x)的極值;
          (2)若g(x)=
          1
          2
          bx2-x+d
          ,在(1)的條件下,是否存在實(shí)數(shù)b,使得函數(shù)g(x)的圖象與函數(shù)f(x)的圖象恒有含x=-1的三個(gè)不同交點(diǎn)?若存在,求出實(shí)數(shù)b的取值范圍;否則說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (1)若函數(shù)y=f(2x+1)的定義域?yàn)閇1,2],求f(x)的定義域.
          (2)已知函數(shù)f(x)的定義域?yàn)閇-
          1
          2
          ,
          3
          2
          ],求函數(shù)g(x)=f(3x)+f(
          x
          3
          )的定義域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在下列五個(gè)命題中:
          ①若a=3
          2
          ,則a⊆{x}x>2
          3
          };
          ②若P={x|0≤x≤4},Q={ y|0≤y≤2},則對(duì)應(yīng)y=
          3x
          2
          不是從P到Q的映射;
          f(x)=
          3
          x
          在(-∞,0)∪(0,+∞)上為減函數(shù);
          ④若函數(shù)y=f(x-1)的圖象經(jīng)過點(diǎn)(4,1),則函數(shù)y=f-1(x)的圖象必經(jīng)過點(diǎn)(1,3);
          ⑤命題“對(duì)任意的x∈R,x3-x2+1≤0”的否定是“不存在x∈R,x3-x2+1≤0”.
          其中所有不正確的命題的序號(hào)為
          ①③⑤
          ①③⑤

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2008•湖北模擬)已知f(x)=x3+bx2+cx+2.
          (Ⅰ)若f(x)在x=1時(shí)有極值-1,求b、c的值;
          (Ⅱ)若函數(shù)y=x2+x-5的圖象與函數(shù)y=
          k-2
          x
          的圖象恰有三個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;
          (Ⅲ)記函數(shù)|f'(x)|(-1≤x≤1)的最大值為M,求證:M≥
          3
          2

          查看答案和解析>>

          同步練習(xí)冊(cè)答案