日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在直角坐標(biāo)平面上給定一曲線y2=2x,
          (1)設(shè)點(diǎn)A的坐標(biāo)為,求曲線上距點(diǎn)A最近的點(diǎn)P的坐標(biāo)及相應(yīng)的距離|PA|.
          (2)設(shè)點(diǎn)A的坐標(biāo)為(a,0),a∈R,求曲線上的點(diǎn)到點(diǎn)A距離的最小值dmin,并寫出dmin=f(a)的函數(shù)表達(dá)式.

          (1)|PA|=      (2)dmin=f(a)=

          解析

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,已知橢圓的焦點(diǎn)在軸上,離心率為,且經(jīng)過點(diǎn)
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2) 以橢圓的長軸為直徑作圓,設(shè)為圓上不在坐標(biāo)軸上的任意一點(diǎn),軸上一點(diǎn),過圓心作直線的垂線交橢圓右準(zhǔn)線于點(diǎn).問:直線能否與圓總相切,如果能,求出點(diǎn)的坐標(biāo);如果不能,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知拋物線的方程為,直線的方程為,點(diǎn)關(guān)于直線的對稱點(diǎn)在拋物線上.
          (1)求拋物線的方程;
          (2)已知,點(diǎn)是拋物線的焦點(diǎn),是拋物線上的動點(diǎn),求的最小值及此時點(diǎn)的坐標(biāo);
          (3)設(shè)點(diǎn)是拋物線上的動點(diǎn),點(diǎn)是拋物線與軸正半軸交點(diǎn),是以為直角頂點(diǎn)的直角三角形.試探究直線是否經(jīng)過定點(diǎn)?若經(jīng)過,求出定點(diǎn)的坐標(biāo);若不經(jīng)過,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (已知拋物線)的準(zhǔn)線與軸交于點(diǎn)
          (1)求拋物線的方程,并寫出焦點(diǎn)坐標(biāo);
          (2)是否存在過焦點(diǎn)的直線(直線與拋物線交于點(diǎn),),使得三角形的面積?若存在,請求出直線的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知拋物線的焦點(diǎn)為,點(diǎn)是拋物線上的一點(diǎn),且其縱坐標(biāo)為4,
          (1)求拋物線的方程;
          (2) 設(shè)點(diǎn)是拋物線上的兩點(diǎn),的角平分線與軸垂直,求的面積最大時直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知橢圓的離心率,且直線是拋物線的一條切線.
          (1)求橢圓的方程;
          (2)點(diǎn)P 為橢圓上一點(diǎn),直線,判斷l(xiāng)與橢圓的位置關(guān)系并給出理由;
          (3)過橢圓上一點(diǎn)P作橢圓的切線交直線于點(diǎn)A,試判斷線段AP為直徑的圓是否恒過定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (2011•浙江)已知拋物線C1:x2=y,圓C2:x2+(y﹣4)2=1的圓心為點(diǎn)M
          (1)求點(diǎn)M到拋物線C1的準(zhǔn)線的距離;
          (2)已知點(diǎn)P是拋物線C1上一點(diǎn)(異于原點(diǎn)),過點(diǎn)P作圓C2的兩條切線,交拋物線C1于A,B兩點(diǎn),若過M,P兩點(diǎn)的直線l垂直于AB,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,設(shè)P是圓上的動點(diǎn),點(diǎn)D是P在軸上投影,M為PD上一點(diǎn),且

          (1)當(dāng)P在圓上運(yùn)動時,求點(diǎn)M的軌跡C的方程;
          (2)求過點(diǎn)(3,0)且斜率為的直線被C所截線段的長度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知動點(diǎn)M(x,y)到直線l:x = 4的距離是它到點(diǎn)N(1,0)的距離的2倍.
          (1)求動點(diǎn)M的軌跡C的方程;
          (2)過點(diǎn)P(0,3)的直線m與軌跡C交于A, B兩點(diǎn). 若A是PB的中點(diǎn), 求直線m的斜率.

          查看答案和解析>>

          同步練習(xí)冊答案