日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知直四棱柱ABCD-A1B1C1D1的底面是菱形,AC∩BD=0,AB=2,∠ABC=60°,E,F(xiàn)分別為棱BB1,CC1上的點,EC=BC=2FB,M是AE的中點.
          (1)求證FM∥BO
          (2)求平面AEF與平面ABCD所成銳二面角的大。
          精英家教網(wǎng)
          分析:(1)連接MF,MO后,由EC=BC=2FB,M是AE的中點,我們易判斷出四邊形OBFM為平行四邊形,結(jié)合平行四邊形的性質(zhì),即可得到結(jié)論.
          (2)延長EF,DB交于G,連接AG.則平面AEF∩平面ABCD=AG.再證出AG⊥AC AG⊥AE,則∠EAC即為所求的平面角.解直角三角形EAC即可獲解.
          解答:精英家教網(wǎng)解:(1)如圖所示,
          連接MF,MO                                      
          ∵EC=2FB,EC∥F
          ∴MO是△ACE的中位線
          ∴2OM=CE,OM∥CE
          ∴OM=FM,OM∥FB
          ∴四邊形OBFM為平行四邊形
          ∴BO∥MF
          (2)由(1)知AG⊥AC,
          又  AA1⊥AG,且AA1∩AC=A,于是知AG⊥面AC,
          ∴∠EAC是 平面AEF與平面ABCD所成銳二面角的平面角.
          ∵AB=2,底面是菱形,且∠ABC=60°,∴AC=2,
          在直角三角形ECA中,AE=2
          2
             
          ,sin∠EAC=
          2
          2
          ,
          ∴∠EAC=
          π
          4
                   
          ∴平面AEF與平面ABCD所成銳二面角的大小是
          π
          4
                                                      精英家教網(wǎng)
          點評:本題考查空間中直線與直線的位置關(guān)系的證明、二面角的求法,平行四邊形的性質(zhì)是線線平行與線面平行平行常用的連接紐帶,二面角的求解時,先作出或在圖中找出它的平面角,再去解三角形,把空間問題轉(zhuǎn)化成平面問題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知直四棱柱ABCD-A1B1C1D1中,AB∥CD,AB=AD=1,DD1=CD=2,AB⊥AD.
          (I)求證:BC⊥面D1DB;
          (II)求D1B與平面D1DCC1所成角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,已知直四棱柱ABCD-A1B1C1D1中,AD⊥DCAB∥DC,且滿足
          DC-DD1=2AD=2AB=2.
          (1)求證:DB⊥平面B1BCC;
          (2)求二面角A1-BD-C1的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知直四棱柱ABCD-A1B1C1D1的底面是邊長為4的菱形,∠BAD=60°,AA1=6,P是棱AA1的中點.求:
          (1)截面PBD分這個棱柱所得的兩個幾何體的體積;
          (2)三棱錐A-PBD的高.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知直四棱柱ABCD-A1B1C1D1的底面是菱形,F(xiàn)為棱BB1的中點,M為線段AC1的中點.
          求證:
          (Ⅰ)直線MF∥平面ABCD;
          (Ⅱ)平面AFC1⊥平面ACC1A1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2010•寶山區(qū)模擬)已知直四棱柱ABCD-A1B1C1D1體積為32,且底面四邊形ABCD為直角梯形,其中上底BC=2,下底AD=6,腰AB=2,且BC⊥AB.
          (文科):
          (1)求異面直線B1A與直線C1D所成角大小;
          (2)求二面角A1-CD-A的大;
          (理科):
          (1)求異面直線B1D與直線AC所成角大小;
          (2)求點C到平面B1C1D的距離.

          查看答案和解析>>

          同步練習(xí)冊答案