日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)與函數(shù)的圖像關(guān)于直線y=x對稱.

          (1)試用含a的代數(shù)式表示函數(shù)f(x)的解析式,并指出它的定義域;

          (2)數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),an>a1.?dāng)?shù)列{bn}中,b1=2,Sn=b1+b2+…bn.點(diǎn)在函數(shù)f(x)的圖像上,求a的值;

          (3)在(2)的條件下,過點(diǎn)Pn作傾斜角為的直線ln,則ln在y軸上的截距為,求數(shù)列{an}的通項(xiàng)公式.

          答案:
          解析:

            (1)由題可知:與函數(shù)互為反函數(shù),所以,

              2分

            (2)因?yàn)辄c(diǎn)在函數(shù)的圖像上,所以,

            (*)

            在上式中令可得:,又因?yàn)椋?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/0526/0021/9205c303b093bff1fb0efe43c4d884a7/C/Image115.gif" width=34 height=24>,,代入可解得:.所以,,(*)式可化為:①6分

            (3)直線的方程為:,

            在其中令,得,又因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/0526/0021/9205c303b093bff1fb0efe43c4d884a7/C/Image121.gif" width=14 height=24>在y軸上的截距為,所以,

            =,結(jié)合①式可得:

            由①可知:當(dāng)自然數(shù)時(shí),,,兩式作差得:

            結(jié)合②式得:

            在③中,令,結(jié)合,可解得:,

            又因?yàn)椋寒?dāng)時(shí),,所以,舍去,得

            同上,在③中,依次令,可解得:,

            猜想:.下用數(shù)學(xué)歸納法證明.  10分

            (1)時(shí),由已知條件及上述求解過程知顯然成立.

            (2)假設(shè)時(shí)命題成立,即,則由③式可得:

            

            把代入上式并解方程得:

            由于,所以,,所以,

            符合題意,應(yīng)舍去,故只有

            所以,時(shí)命題也成立.

            綜上可知:數(shù)列的通項(xiàng)公式為  14分


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          x2
          1+x2

          (1)由f(2)=
          4
          5
          ,f(
          1
          2
          )=
          1
          5
          ,f(3)=
          9
          10
          ,f(
          1
          3
          )=
          1
          10
          這幾個(gè)函數(shù)值,你能發(fā)現(xiàn)f(x)與f(
          1
          x
          )
          有什么關(guān)系?并證明你的結(jié)論;
          (2)求f(1)+f(2)+f(3)+…+f(2010)+f(
          1
          2
          )+f(
          1
          3
          )+…+f(
          1
          2010
          )
          的值;
          (3)判斷函數(shù)f(x)=
          x2
          1+x2
          在區(qū)間(0,+∞)上的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1
          2
          x2-3x-
          3
          4
          .定義函數(shù)f(x)與實(shí)數(shù)m的一種符號運(yùn)算為m?f(x)=f(x)•[f(x+m)-f(x)].
          (1)求使函數(shù)值f(x)大于0的x的取值范圍;
          (2)若g(x)=4?f(x)+
          7
          2
          x2
          ,求g(x)在區(qū)間[0,4]上的最大值與最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          1
          2
          x2-3x-
          3
          4
          .定義函數(shù)f(x)與實(shí)數(shù)m的一種符號運(yùn)算為m?f(x)=f(x)•[f(x+m)-f(x)].
          (1)求使函數(shù)值f(x)大于0的x的取值范圍;
          (2)若g(x)=4?f(x)+
          7
          2
          x2
          ,求g(x)在區(qū)間[0,4]上的最大值與最小值;
          (3)是否存在一個(gè)數(shù)列{an},使得其前n項(xiàng)和Sn=4?f(n)+
          7
          2
          n2
          .若存在,求出其通項(xiàng);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=.

          (1)求圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo)、與x軸的交點(diǎn)坐標(biāo);

          (2)求函數(shù)的單調(diào)區(qū)間、最值和零點(diǎn);

          (3)設(shè)圖象與x軸相交于(x1,0)、(x2,0),不求出根,求|x1-x2|;

          (4)已知f(-)=,不計(jì)算函數(shù)值,求f(-);

          (5)不計(jì)算函數(shù)值,試比較f(-)與f(-)的大;

          (6)寫出使函數(shù)值為負(fù)數(shù)的自變量x的集合.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)f(x)=
          x2
          1+x2

          (1)由f(2)=
          4
          5
          f(
          1
          2
          )=
          1
          5
          ,f(3)=
          9
          10
          ,f(
          1
          3
          )=
          1
          10
          這幾個(gè)函數(shù)值,你能發(fā)現(xiàn)f(x)與f(
          1
          x
          )
          有什么關(guān)系?并證明你的結(jié)論;
          (2)求f(1)+f(2)+f(3)+…+f(2010)+f(
          1
          2
          )+f(
          1
          3
          )+…+f(
          1
          2010
          )
          的值;
          (3)判斷函數(shù)f(x)=
          x2
          1+x2
          在區(qū)間(0,+∞)上的單調(diào)性.

          查看答案和解析>>

          同步練習(xí)冊答案