日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分12分)如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,,E,F(xiàn)分別是BC, PC的中點(diǎn).

          (1)證明:AE⊥PD;

          (2)若H為PD上的動(dòng)點(diǎn),EH與平面PAD所成最大角的正切值為,求二面角E—AF—C的余弦值.

           

          【答案】

           

          (1)略

          (2)

          【解析】(Ⅰ)證明:由四邊形ABCD為菱形,∠ABC=60°,可得△ABC為正三角形.

          因?yàn)?nbsp;     E為BC的中點(diǎn),所以AE⊥BC.

               又   BC∥AD,因此AE⊥AD.

          因?yàn)镻A⊥平面ABCD,AE平面ABCD,所以PA⊥AE.

          而    PA平面PAD,AD平面PAD 且PA∩AD=A,

          所以  AE⊥平面PAD,又PD平面PAD.

          所以 AE⊥PD………4分

          (Ⅱ)解:設(shè)AB=2,H為PD上任意一點(diǎn),連接AH,EH.

          由(Ⅰ)知   AE⊥平面PAD,

          則∠EHA為EH與平面PAD所成的角.

          在Rt△EAH中,AE=,

          所以  當(dāng)AH最短時(shí),∠EHA最大,

          即     當(dāng)AH⊥PD時(shí),∠EHA最大.

          此時(shí)    tan∠EHA=

          因此   AH=.又AD=2,所以∠ADH=45°,

          所以    PA=2………6分

          解法一:因?yàn)?nbsp;  PA⊥平面ABCD,PA平面PAC,

                  所以   平面PAC⊥平面ABCD.

                  過E作EO⊥AC于O,則EO⊥平面PAC,

                  過O作OS⊥AF于S,連接ES,則∠ESO為二面角E-AF-C的平面角,

                 在Rt△AOE中,EO=AE·sin30°=,AO=AE·cos30°=,

                 又F是PC的中點(diǎn),在Rt△ASO中,SO=AO·sin45°=,

                 又    

                 在Rt△ESO中,cos∠ESO=

                 即所求二面角的余弦值為……12分

          解法二:由(Ⅰ)知AE,AD,AP兩兩垂直,以A為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,又E、F分別為BC、PC的中點(diǎn),所以

          E、F分別為BC、PC的中點(diǎn),所以

          A(0,0,0),B(,-1,0),C(C,1,0),

          D(0,2,0),P(0,0,2),E(,0,0),F(xiàn)(),

          所以    

          設(shè)平面AEF的一法向量為

           


          因此

           

           


          因?yàn)?nbsp; BD⊥AC,BD⊥PA,PA∩AC=A,

          所以   BD⊥平面AFC,

          故     為平面AFC的一法向量.

          又     =(),

           

           

           


          因?yàn)?nbsp;  二面角E-AF-C為銳角,

          所以所求二面角的余弦值為……12分

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (文) (本小題滿分12分已知函數(shù)y=4-2
          3
          sinx•cosx-2sin2x(x∈R)

          (1)求函數(shù)的值域和最小正周期;
          (2)求函數(shù)的遞減區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•自貢三模)(本小題滿分12分>
          設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
          ON
          |=6,
          ON
          =
          5
          OM
          .過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
          OT
          =
          M1M
          +
          N1N
          ,記點(diǎn)T的軌跡為曲線C.
          (I)求曲線C的方程:
          (H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
          OP
          =3
          OA
          ,S△PAQ=-26tan∠PAQ求直線L的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009湖南卷文)(本小題滿分12分)

          為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

          (I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

          (II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本小題滿分12分)

          某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

          (注:利潤與投資單位是萬元)

          (1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案