【題目】橢圓的兩個焦點
,
,設(shè)
,
分別是橢圓
的上、下頂點,且四邊形
的面積為
,其內(nèi)切圓周長為
.
(1)求橢圓的方程;
(2)當(dāng)時,
,
為橢圓
上的動點,且
,試問:直線
是否恒過一定點?若是,求出此定點坐標(biāo),若不是,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐中,點
在以
為直徑的圓
上,平面
平面
,點
在線段
上,且
,
,
,
,點
為
的重心,點
為
的中點.
(1)求證:平面
;
(2)求點到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左,右焦點
,
,上頂點為
,
,
為橢圓上任意一點,且
的面積最大值為
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若點.
為橢圓
上的兩個不同的動點,且
(
為坐標(biāo)原點),則是否存在常數(shù)
,使得
點到直線
的距離為定值?若存在,求出常數(shù)
和這個定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點為
,在
上存在
,
兩點滿足
,且點
在
軸上方,以
為切點作
的切線
,
與該拋物線的準(zhǔn)線相交于
,則
的坐標(biāo)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,
為橢圓的左、右焦點,點
在直線
上且不在
軸上,直線
與橢圓的交點分別為
和
,
為坐標(biāo)原點.
設(shè)直線
的斜率為
,證明:
問直線
上是否存在點
,使得直線
的斜率
滿足
?若存在,求出所有滿足條件的點
的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知點A(2,0),B(2,0),動點M(x,y)滿足直線AM與BM的斜率之積為.記M的軌跡為曲線C.
(1)求C的方程,并說明C是什么曲線;
(2)過坐標(biāo)原點的直線交C于P,Q兩點,點P在第一象限,PE⊥x軸,垂足為E,連結(jié)QE并延長交C于點G.
(i)證明:是直角三角形;
(ii)求面積的最大值.
(二)選考題:共10分.請考生在第22、23題中任選一題作答。如果多做,則按所做的第一題計分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩點分別在
軸和
軸上運動,且
,若動點
滿足
.
(1)求出動點P的軌跡對應(yīng)曲線C的標(biāo)準(zhǔn)方程;
(2)一條縱截距為2的直線與曲線C交于P,Q兩點,若以PQ直徑的圓恰過原點,求出直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正四棱錐可繞著
任意旋轉(zhuǎn),
平面
.若
,
,則正四棱錐
在面
內(nèi)的投影面積的取值范圍是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com