日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在棱長為1的正方體中.

            

          (I)在側棱上是否存在一個點P,使得直線與平面所成角的正切值為;          

            (Ⅱ)若P是側棱上一動點,在線段上是否存在一個定點,使得在平面上的射影垂直于.并證明你的結論.

          (1)當PC=時,直線AP與平面所成的角的正切值為.(2)點Q應當是A1C1的中點O1,


          解析:

          解法一:(Ⅰ)如圖,設PC=m,連AC,

          設AC與BD相交于點O,AP與平面相交于點G,,

          連結OG,因為PC∥平面

          平面∩平面APC=OG,故OG∥PC,

          所以,OG=PC=.又AO⊥BD,AO⊥BB1,

          所以AO⊥平面

          故∠AGO是AP與平面所成的角.

          在Rt△AOG中,tanAGO=, 即m=

          所以,當PC=時,直線AP與平面所成的角的正切值為. …………………6分

             (Ⅱ)可以推測,點Q應當是A1C1的中點O1,因為D1O1⊥A1C1, 且 D1O1⊥A1A ,所以 D1O1⊥平面ACC1A1,又AP平面ACC1A1,故 D1O1⊥AP.那么根據(jù)三垂線定理知,D1O1在平面APD1的射影與AP垂直. …………………12分

          解法二:(Ⅰ)建立如圖所示的空間直角坐標系,

          則A(1,0,0),B(1,1,0),P(0,1,m),C(0,1,0),D(0,0,0),

          B1(1,1,1),D1(0,0,1)

          所以          

          又由知,為平面的一個法向量.

          設AP與平面所成的角為,

          依題意有

          解得

          故當時,直線AP與平面所成的角的正切值為. ……………6分

             (Ⅱ)若在A1C1上存在這樣的點Q,設此點的橫坐標為,

          則Q(x,1-,1),。

          依題意,要使D1Q在平面APD1上的射影垂直于AP,

          等價于D1Q⊥AP

          即Q為A1C1的中點時,滿足題設要求. …………………12分         

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
          (1)求證:DE∥平面ABC;
          (2)求證:B1C⊥平面BDE.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內,底面ABC平行于平面α,平面OBC與平面α的交線為l.
          (1)當平面OBC繞l順時針旋轉與平面α第一次重合時,求平面OBC轉過角的正弦
          值.
          (2)在上述旋轉過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當AO⊥平面α時,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
          (1)求證:DE∥平面ABC;
          (2)求證:B1C⊥平面BDE.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2009-2010學年江蘇省南京市金陵中學高三(上)8月月考數(shù)學試卷(解析版) 題型:解答題

          如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
          (1)求證:DE∥平面ABC;
          (2)求證:B1C⊥平面BDE.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012年安徽省合肥八中高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

          如圖,一棱長為2的正四面體O-ABC的頂點O在平面α內,底面ABC平行于平面α,平面OBC與平面α的交線為l.
          (1)當平面OBC繞l順時針旋轉與平面α第一次重合時,求平面OBC轉過角的正弦
          值.
          (2)在上述旋轉過程中,△OBC在平面α上的投影為等腰△OB1C1(如圖1),B1C1的中點為O1.當AO⊥平面α時,問在線段OA上是否存在一點P,使O1P⊥OBC?請說明理由.

          查看答案和解析>>

          同步練習冊答案