日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題滿分13分)

          橢圓的離心率為分別是左、右焦點,過F1的直線與圓相切,且與橢圓E交于A、B兩點。

          (1)當時,求橢圓E的方程;

          (2)求弦AB中點的軌跡方程。

           

          【答案】

          解:由橢圓E:)的離心率為,可設(shè)橢圓E:

          根據(jù)已知設(shè)切線AB為:,

          (Ⅰ)圓的圓心到直線的距離為

             

              ∴切線AB為:,

              聯(lián)立方程: ,

              ∴,

          ∴橢圓E的方程為:!9分

          (Ⅱ)由(Ⅰ)得,AB的中點

          故弦AB的中點軌跡方程為!13分

          【解析】略

           

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題

          (本小題滿分13分)已知函數(shù).

          (1)求函數(shù)的最小正周期和最大值;

          (2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.

          (3)設(shè)0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

          (本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).

          (1)求的值;(2)判斷函數(shù)的單調(diào)性;

          (3)若對任意的,不等式恒成立,求k的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

          (本小題滿分13分)已知集合, ,.

          (1)求(∁; (2)若,求的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題

           

          (本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

          (Ⅰ)求證:∥平面;

          (Ⅱ)求異面直線所成的角。www.7caiedu.cn           

           

           

           

           

           

           


          [來源:KS5

           

           

           

           

          U.COM

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調(diào)理科數(shù)學 題型:解答題

          (本小題滿分13分)

          已知為銳角,且,函數(shù),數(shù)列{}的首項.

          (1) 求函數(shù)的表達式;

          (2)在中,若A=2,,BC=2,求的面積

          (3) 求數(shù)列的前項和

           

           

          查看答案和解析>>

          同步練習冊答案