日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),其中為非零實(shí)數(shù).

          1)求的極值;

          2)當(dāng)時(shí),在函數(shù)的圖象上任取兩個(gè)不同的點(diǎn)、.若當(dāng)時(shí),總有不等式成立,求正實(shí)數(shù)的取值范圍:

          3)當(dāng)時(shí),設(shè),證明:.

          【答案】1)見解析;(2;(3)證明見解析.

          【解析】

          1)求導(dǎo),對(duì)兩種情況討論,分析函數(shù)的單調(diào)性,即可得出函數(shù)的極值;

          2)由,得出,構(gòu)造函數(shù),可知函數(shù)在區(qū)間上為減函數(shù)或常函數(shù),解不等式,即可得出實(shí)數(shù)的取值范圍;

          3時(shí),構(gòu)造函數(shù),把看做主元,求導(dǎo)判斷即可.

          1,其中為非零實(shí)數(shù),.

          ①當(dāng)時(shí),,,函數(shù)單調(diào)遞減;時(shí),,函數(shù)單調(diào)遞增.

          所以,函數(shù)有極小值;

          ②當(dāng)時(shí),,函數(shù)單調(diào)遞增;時(shí),,函數(shù)單調(diào)遞減.

          所以,函數(shù)有極大值.

          綜上所述,當(dāng)時(shí),函數(shù)有極小值;

          當(dāng)時(shí),函數(shù)有極大值;

          2)當(dāng)時(shí),,

          當(dāng)時(shí),總有不等式成立,

          ,構(gòu)造函數(shù),

          由于,

          則函數(shù)在區(qū)間上為減函數(shù)或常函數(shù),

          ,解不等式,解得.

          由題意可知,因此,正實(shí)數(shù)的取值范圍是;

          3時(shí),根據(jù)(1),函數(shù)上單調(diào)遞增,在上單調(diào)遞減.

          構(gòu)造函數(shù),

          當(dāng)時(shí),.

          故函數(shù)上單調(diào)遞增,

          同理當(dāng)時(shí),,則函數(shù)上單調(diào)遞減,

          所以,函數(shù)的最大值為,故.

          因此,成立.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知是橢圓的左右頂點(diǎn),點(diǎn)為橢圓上一點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,且.

          1)若橢圓經(jīng)過(guò)圓的圓心,求橢圓的方程;

          2)在(1)的條件下,若過(guò)點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在棱長(zhǎng)為的正方體中,OAC的中點(diǎn),E是線段D1O上一點(diǎn),且D1E=λEO.

          (1)若λ=1,求異面直線DECD1所成角的余弦值;

          (2)若平面CDE平面CD1Oλ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系中,曲線為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長(zhǎng)度的極坐標(biāo)系中,曲線.

          (1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;

          (2)若曲線上恰好存在三個(gè)不同的點(diǎn)到曲線的距離相等,求這三個(gè)點(diǎn)的極坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某地在國(guó)慶節(jié)天假期中的樓房認(rèn)購(gòu)量(單位:套)與成交量(單位:套)的折線圖如圖所示,小明同學(xué)根據(jù)折線圖對(duì)這天的認(rèn)購(gòu)量與成交量作出如下判斷:①成交量的中位數(shù)為;②認(rèn)購(gòu)量與日期正相關(guān);③日成交量超過(guò)日平均成交量的有天,則上述判斷中正確的個(gè)數(shù)為(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列的奇數(shù)項(xiàng)是首項(xiàng)為的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為的等比數(shù)列.?dāng)?shù)列項(xiàng)和為,且滿足,

          1)求數(shù)列的通項(xiàng)公式;

          2)若,求正整數(shù)的值;

          3)是否存在正整數(shù),使得恰好為數(shù)列中的一項(xiàng)?若存在,求出所有滿足條件的值,若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若函數(shù)的圖象與曲線C:存在公共切線,則實(shí)數(shù)的取值范圍為

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

          日期

          12月1日

          12月2日

          12月3日

          12月4日

          12月5日

          溫差/攝氏度

          10

          11

          13

          12

          8

          發(fā)芽數(shù)/顆

          23

          25

          30

          26

          16

          該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

          (1)求選取的2組數(shù)據(jù)恰好是不相鄰2天的數(shù)據(jù)的概率;

          (2)若選取的是12月1日與12月5日的2組數(shù)據(jù),請(qǐng)根據(jù)12月2日至4日的數(shù)據(jù),求出關(guān)于的線性回歸方程,由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

          附:參考公式:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù), ).

          (1)如果曲線在點(diǎn)處的切線方程為,求 的值;

          (2)若 ,關(guān)于的不等式的整數(shù)解有且只有一個(gè),求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案