日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 數(shù)列{an}的前n項和為sn,sn=2an-3n(n∈N*).
          (1)求證數(shù)列{an+3}是等比數(shù)列;
          (2)求數(shù)列{an}的通項公式;
          (3)數(shù)列{an}中是否存在三項,它們可以構(gòu)成等差數(shù)列.若存在,請給出一組適合條件的項,若不存在,請說明理由.
          分析:(1)根據(jù)an+1=Sn+1-Sn,求得an+1=2an+3,整理可得
          an+1+3
          an+3
          =2
          判斷出數(shù)列{an+3}是等比數(shù)列,
          (2)由(1)知數(shù)列{an+3}是等比數(shù)列,利用等比數(shù)列的通項公式求得an+3進而求得an
          (3)設(shè)存在s,p,r∈N*,且s<p<r,使得as,ap,ar成等差數(shù)列,根據(jù)等差中項的性質(zhì)可知2ap=as+ar,利用(2)中的an展開得2p+1=2s+2r,2p-s+1=1+2r-s,進而根據(jù)2p-s+1,2r-s為偶數(shù),而1+2r-s為奇數(shù),判斷出假設(shè)不成立.故可知不存在這樣的三項.
          解答:證明:(1):因為Sn=2an-3n,所以Sn+1=2an+1-3(n+1),
          則an+1=2an+1-2an-3,所以an+1=2an+3,
          an+1+3
          an+3
          =2
          ,
          數(shù)列{an+3}是等比數(shù)列,
          解:(2)由(1)知數(shù)列{an+3}是等比數(shù)列
          又a1=S1=3,a1+3=6,
          ∴an+3=6•2n-1=3•2n,
          所以an=3•2n-3.
          (3)設(shè)存在s,p,r∈N*,且s<p<r,使得as,ap,ar成等差數(shù)列,則2ap=as+ar,即2(3•2p-3)=3•2s-3+3•2r-3
          即2p+1=2s+2r,2p-s+1=1+2r-s,2p-s+1,2r-s為偶數(shù),而1+2r-s為奇數(shù),
          所以2p+1=2s+2r不成立,故不存在滿足條件的三項
          點評:本題考查了數(shù)列的遞推式,等比關(guān)系的確定,等比數(shù)列通項公式,等差數(shù)列的性質(zhì),解題的關(guān)鍵是由題設(shè)中的遞推關(guān)系得出數(shù)列an=3•2n-3,本題第三小題是難點,
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項的和,Tn表示數(shù)列{an}的前n項的乘積,Tn(k)表示{an}的前n項中除去第k項后剩余的n-1項的乘積,即Tn(k)=
          Tn
          ak
          (n,k∈N+,k≤n),則數(shù)列
          SnTn
          Tn(1)+Tn(2)+…+Tn(n)
          的前n項的和是
          a12
          2-q-q-1
          (n+nq-
          q-qn+1+1-q1-n
          1-q
          a12
          2-q-q-1
          (n+nq-
          q-qn+1+1-q1-n
          1-q
          (用a1和q表示)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若數(shù)列{an}的通項an=
          1
          pn-q
          ,實數(shù)p,q滿足p>q>0且p>1,sn為數(shù)列{an}的前n項和.
          (1)求證:當(dāng)n≥2時,pan<an-1;
          (2)求證sn
          p
          (p-1)(p-q)
          (1-
          1
          pn
          )
          ;
          (3)若an=
          1
          (2n-1)(2n+1-1)
          ,求證sn
          2
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知Sn是數(shù)列{an}的前n項和,an>0,Sn=
          a
          2
          n
          +an
          2
          ,n∈N*,
          (1)求證:{an}是等差數(shù)列;
          (2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項公式bn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•商丘二模)數(shù)列{an}的前n項和為Sn,若數(shù)列{an}的各項按如下規(guī)律排列:
          1
          2
          1
          3
          ,
          2
          3
          ,
          1
          4
          ,
          2
          4
          ,
          3
          4
          ,
          1
          5
          ,
          2
          5
          ,
          3
          5
          4
          5
          …,
          1
          n
          ,
          2
          n
          ,…,
          n-1
          n
          ,…有如下運算和結(jié)論:
          ①a24=
          3
          8
          ;
          ②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
          ③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項和為Tn=
          n2+n
          4
          ;
          ④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
          5
          7

          其中正確的結(jié)論是
          ①③④
          ①③④
          .(將你認(rèn)為正確的結(jié)論序號都填上)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          給出下列命題:
          ①若數(shù)列{an}的前n項和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
          ②在△ABC中,如果A=60°,a=
          6
          ,b=4
          ,那么滿足條件的△ABC有兩解;
          ③設(shè)函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
          ④設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
          其中真命題的序號是

          查看答案和解析>>

          同步練習(xí)冊答案