日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若橢圓的對稱軸在坐標(biāo)軸上,短軸的一個端點(diǎn)與兩個焦點(diǎn)組成一個正三角形,焦點(diǎn)到橢圓上的最短距離為,則這個橢圓的方程為(  )

          A=1

          B

          C1=1

          D.以上都不對

           

          答案:C
          提示:

          設(shè)短軸長為a,長軸長為b,依題有:a=2c,ac=,又a2b2=c2,計(jì)算得a2=12b2=9.若短軸與長軸互換,為另一種情況.

           


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

          現(xiàn)有變換公式可把平面直角坐標(biāo)系上的一點(diǎn)變換到這一平面上的一點(diǎn).

          (1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且焦距為,長軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個焦點(diǎn)、經(jīng)變換公式變換后得到的點(diǎn)的坐標(biāo);

          (2) 若曲線上一點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)與點(diǎn)重合,則稱點(diǎn)是曲線在變換下的不動點(diǎn). 求(1)中的橢圓在變換下的所有不動點(diǎn)的坐標(biāo);

          (3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點(diǎn)、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動點(diǎn)的存在情況和個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

          定義變換可把平面直角坐標(biāo)系上的點(diǎn)變換到這一平面上的點(diǎn).特別地,若曲線上一點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)與點(diǎn)重合,則稱點(diǎn)是曲線在變換下的不動點(diǎn).

          (1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且焦距為,長軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程. 并求出當(dāng)時(shí),其兩個焦點(diǎn)、經(jīng)變換公式變換后得到的點(diǎn)的坐標(biāo);

          (2)當(dāng)時(shí),求(1)中的橢圓在變換下的所有不動點(diǎn)的坐標(biāo);

          (3)試探究:中心為坐標(biāo)原點(diǎn)、對稱軸為坐標(biāo)軸的雙曲線在變換

          ,)下的不動點(diǎn)的存在情況和個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆山西省高二上學(xué)期期末理科數(shù)學(xué)試卷(A)(解析版) 題型:解答題

          (本小題滿分12分)

          已知橢圓的中心在坐標(biāo)原點(diǎn)、對稱軸為坐標(biāo)軸,且拋物線的焦點(diǎn)是它的一個焦點(diǎn),又點(diǎn)在該橢圓上.

          (1)求橢圓的方程;

          (2)若斜率為直線與橢圓交于不同的兩點(diǎn),當(dāng)面積的最大值時(shí),求直線的方程.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題

          (本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

          定義變換可把平面直角坐標(biāo)系上的點(diǎn)變換到這一平面上的點(diǎn).特別地,若曲線上一點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)與點(diǎn)重合,則稱點(diǎn)是曲線在變換下的不動點(diǎn).

          (1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且焦距為,長軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程. 并求出當(dāng)時(shí),其兩個焦點(diǎn)、經(jīng)變換公式變換后得到的點(diǎn)的坐標(biāo);

          (2)當(dāng)時(shí),求(1)中的橢圓在變換下的所有不動點(diǎn)的坐標(biāo);

          (3)試探究:中心為坐標(biāo)原點(diǎn)、對稱軸為坐標(biāo)軸的雙曲線在變換

          ,)下的不動點(diǎn)的存在情況和個數(shù).

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題

          (本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

          現(xiàn)有變換公式可把平面直角坐標(biāo)系上的一點(diǎn)變換到這一平面上的一點(diǎn).

          (1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且焦距為,長軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個焦點(diǎn)、經(jīng)變換公式變換后得到的點(diǎn)的坐標(biāo);

          (2) 若曲線上一點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)與點(diǎn)重合,則稱點(diǎn)是曲線在變換下的不動點(diǎn). 求(1)中的橢圓在變換下的所有不動點(diǎn)的坐標(biāo);

          (3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點(diǎn)、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動點(diǎn)的存在情況和個數(shù).

           

          查看答案和解析>>

          同步練習(xí)冊答案