日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知雙曲線(xiàn)的焦點(diǎn)與橢圓的焦點(diǎn)重合,且該橢圓的長(zhǎng)軸長(zhǎng)為,是橢圓上的的動(dòng)點(diǎn).

          1求橢圓標(biāo)準(zhǔn)方程;

          2設(shè)動(dòng)點(diǎn)滿(mǎn)足:,直線(xiàn)的斜率之積為,求證:存在定點(diǎn)

          使得為定值,并求出的坐標(biāo);

          3)若在第一象限,且點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),點(diǎn)的射影為,連接 并延長(zhǎng)交橢圓于

          點(diǎn),求證為直徑的圓經(jīng)過(guò)點(diǎn).

           

          【答案】

          1;(2)存在;3證明過(guò)程詳見(jiàn)試題解析.

          【解析】

          試題分析:1)由雙曲線(xiàn)的焦點(diǎn)與橢圓的焦點(diǎn)重合求出橢圓中的,再由,求出所求橢圓方程為;(2)先設(shè),由,結(jié)合橢圓的標(biāo)準(zhǔn)方程可以得到使得為定值;3要證明以為直徑的圓經(jīng)過(guò)點(diǎn),就是證明,詳見(jiàn)解析.

          試題解析:1解:由題設(shè)可知:雙曲線(xiàn)的焦點(diǎn)為

          所以橢圓中的

          又由橢圓的長(zhǎng)軸為4

          故橢圓的標(biāo)準(zhǔn)方程為:

          2證明:設(shè),由可得:

          由直線(xiàn)的斜率之積為可得:

          ,即

          ①②可得:6

          M、N是橢圓上,故

          ,即

          由橢圓定義可知存在兩個(gè)定點(diǎn),使得動(dòng)點(diǎn)P到兩定點(diǎn)距離和為定值;

          3證明:設(shè)

          由題設(shè)可知

          由題設(shè)可知斜率存在且滿(mǎn)足.……③

          代入可得:

          點(diǎn)在橢圓,故

          所以

          因此以為直徑的圓經(jīng)過(guò)點(diǎn).

          考點(diǎn):直線(xiàn)與圓錐曲線(xiàn).

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•浦東新區(qū)二模)(1)設(shè)橢圓C1
          x2
          a2
          +
          y2
          b2
          =1
          與雙曲線(xiàn)C29x2-
          9y2
          8
          =1
          有相同的焦點(diǎn)F1、F2,M是橢圓C1與雙曲線(xiàn)C2的公共點(diǎn),且△MF1F2的周長(zhǎng)為6,求橢圓C1的方程;
          我們把具有公共焦點(diǎn)、公共對(duì)稱(chēng)軸的兩段圓錐曲線(xiàn)弧合成的封閉曲線(xiàn)稱(chēng)為“盾圓”.
          (2)如圖,已知“盾圓D”的方程為y2=
          4x            (0≤x≤3)
          -12(x-4)  (3<x≤4)
          .設(shè)“盾圓D”上的任意一點(diǎn)M到F(1,0)的距離為d1,M到直線(xiàn)l:x=3的距離為d2,求證:d1+d2為定值; 
          (3)由拋物線(xiàn)弧E1:y2=4x(0≤x≤
          2
          3
          )與第(1)小題橢圓弧E2
          x2
          a2
          +
          y2
          b2
          =1
          2
          3
          ≤x≤a
          )所合成的封閉曲線(xiàn)為“盾圓E”.設(shè)過(guò)點(diǎn)F(1,0)的直線(xiàn)與“盾圓E”交于A、B兩點(diǎn),|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),試用cosα表示r1;并求
          r1
          r2
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率為
          1
          2
          ,橢圓的短軸端點(diǎn)與雙曲線(xiàn)
          y2
          2
          -x2
          =1的焦點(diǎn)重合,過(guò)P(4,0)且不垂直于x軸直線(xiàn)l與橢圓C相交于A、B兩點(diǎn).
          (Ⅰ)求橢C的方程;
          (Ⅱ)求
          OA
          OB
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本小題滿(mǎn)分13分)

            如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的

            左、右焦點(diǎn)為頂點(diǎn)的三角形的周長(zhǎng)為.一等軸雙曲線(xiàn)的頂點(diǎn)是該橢

            圓的焦點(diǎn),設(shè)為該雙曲線(xiàn)上異于頂點(diǎn)的任一點(diǎn),直線(xiàn)與橢圓的交點(diǎn)

            分別 為

             (Ⅰ)求橢圓和雙曲線(xiàn)的標(biāo)準(zhǔn)方程; 

             (Ⅱ)設(shè)直線(xiàn)、的斜率分別為、,證明;

             (Ⅲ)是否存在常數(shù),使得恒成立?

                若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

                                                                       

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市浦東新區(qū)高三4月高考預(yù)測(cè)(二模)理科數(shù)學(xué)試卷(解析版) 題型:解答題

          (1)設(shè)橢圓與雙曲線(xiàn)有相同的焦點(diǎn),是橢圓與雙曲線(xiàn)的公共點(diǎn),且的周長(zhǎng)為,求橢圓的方程;

          我們把具有公共焦點(diǎn)、公共對(duì)稱(chēng)軸的兩段圓錐曲線(xiàn)弧合成的封閉曲線(xiàn)稱(chēng)為“盾圓”.

          (2)如圖,已知“盾圓”的方程為.設(shè)“盾圓”上的任意一點(diǎn)的距離為,到直線(xiàn)的距離為,求證:為定值;

           

          (3)由拋物線(xiàn)弧)與第(1)小題橢圓弧)所合成的封閉曲線(xiàn)為“盾圓”.設(shè)過(guò)點(diǎn)的直線(xiàn)與“盾圓”交于兩點(diǎn),),試用表示;并求的取值范圍.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (1)設(shè)橢圓C1數(shù)學(xué)公式與雙曲線(xiàn)C2數(shù)學(xué)公式有相同的焦點(diǎn)F1、F2,M是橢圓C1與雙曲線(xiàn)C2的公共點(diǎn),且△MF1F2的周長(zhǎng)為6,求橢圓C1的方程;
          我們把具有公共焦點(diǎn)、公共對(duì)稱(chēng)軸的兩段圓錐曲線(xiàn)弧合成的封閉曲線(xiàn)稱(chēng)為“盾圓”.
          (2)如圖,已知“盾圓D”的方程為數(shù)學(xué)公式.設(shè)“盾圓D”上的任意一點(diǎn)M到F(1,0)的距離為d1,M到直線(xiàn)l:x=3的距離為d2,求證:d1+d2為定值;
          (3)由拋物線(xiàn)弧E1:y2=4x(0數(shù)學(xué)公式)與第(1)小題橢圓弧E2數(shù)學(xué)公式數(shù)學(xué)公式)所合成的封閉曲線(xiàn)為“盾圓E”.設(shè)過(guò)點(diǎn)F(1,0)的直線(xiàn)與“盾圓E”交于A、B兩點(diǎn),|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),試用cosα表示r1;并求數(shù)學(xué)公式的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案