日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}中,a2=a+2(a為常數(shù)),Sn是{an}的前n項和,且Sn是nan與na的等差中項.
          (1)求數(shù)列{an}的通項公式;
          (2)設(shè)數(shù)列{bn}是首項為1,公比為的等比數(shù)列,Tn是{bn}的前n項和,問是否存在常數(shù)a,使a10•Tn<12恒成立?若存在,求出a的取值范圍;若不存在,說明理由.
          【答案】分析:(1)由Sn是nan與na的等差中項,我們易得2Sn=nan+na,進一步得到2Sn-1=nan-1+(n-1)a,由于關(guān)系式中即有Sn又有an故可根據(jù)an=Sn-Sn-1,將上述公式相減得到數(shù)列的遞推公式,進一步求出數(shù)列的通項公式.
          (2)根據(jù)已知條件,不難寫出數(shù)列{bn}的前n項和公式Tn,結(jié)合(1)的結(jié)論,可構(gòu)造出一個關(guān)于a 的不等式,解不等式,可得滿足條件的a的取值范圍.
          解答:解:(1)由已知得:2Sn=nan+na,
          所以當(dāng)n≥2時2Sn-1=(n-1)an-1+(n-1)a.
          兩式相減得:2an=nan-(n-1)an-1+a,
          整理得:(n-1)an-1=(n-2)an+a.
          當(dāng)n≥3時,上式可化為:
          ,
          于是:
          又,2a1=a1+a⇒a1=a,a2=a+2均滿足上式,
          故an=2n+a-2(n∈N*
          (2)因為,
          所以
          又a10=a+18,所以a10•Tn<12
          可化為,
          整理得:

          則當(dāng)n為奇數(shù)時,
          當(dāng)n為偶數(shù)時,
          所以,,

          故存在常數(shù)a,使a10•Tn<12恒成立,
          其范圍是(-∞,-6).
          點評:本題是數(shù)列的綜合應(yīng)用問題,考查的知識點多而且均為難點,對于此類型的問題處理方法為:1.審題--弄清題意,分析涉及哪些數(shù)學(xué)內(nèi)容,在每個數(shù)學(xué)內(nèi)容中,各是什么問題.2.分解--把整個大題分解成幾個小題或幾個“步驟”,每個小題或每個小“步驟”分別是數(shù)列問題、函數(shù)問題、解析幾何問題、不等式問題等.3.求解--分別求解這些小題或這些小“步驟”,從而得到整個問題的解答
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}中,a1=1,an+1-an=
          1
          3n+1
          (n∈N*)
          ,則
          lim
          n→∞
          an
          =
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}中,a1=1,an+1=
          an
          1+2an
          ,則{an}的通項公式an=
          1
          2n-1
          1
          2n-1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
          n+1
          2
          an+1(n∈N*)

          (1)求數(shù)列{an}的通項公式;
          (2)求數(shù)列{
          2n
          an
          }
          的前n項和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}中,a1=
          1
          2
          ,Sn
          為數(shù)列的前n項和,且Sn
          1
          an
          的一個等比中項為n(n∈N*
          ),則
          lim
          n→∞
          Sn
          =
          1
          1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項公式為(  )
          A、
          n
          2n
          B、
          n
          2n-1
          C、
          n
          2n-1
          D、
          n+1
          2n

          查看答案和解析>>

          同步練習(xí)冊答案