日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知多面體中,為菱形,平面,,.

          (1)求證:平面平面

          (2)求二面角的余弦值.

          【答案】(1)證明見解析;(2).

          【解析】

          (1)由題意可知、共面.連接,,相交于點(diǎn)由空間幾何關(guān)系可證得平面,,結(jié)合題意有平面,結(jié)合面面垂直的判斷定理可得平面平面.

          (2)取的中點(diǎn),A點(diǎn)為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,結(jié)合幾何體的結(jié)構(gòu)特征可得平面的法向量為,平面的法向量,利用空間向量的結(jié)論可得二面角的余弦值為.

          (1)證明:∵,∴四點(diǎn)、、共面.

          如圖所示,連接,,相交于點(diǎn),

          ∵四邊形是菱形,∴對(duì)角線,

          平面,

          ,又,

          平面,

          ,

          ,

          平面,

          平面,

          ∴平面平面.

          (2)取的中點(diǎn),

          ,,

          是等邊三角形,∴,

          ,

          A點(diǎn)為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,

          ,,,,.

          ,,,.

          .

          ,解得.

          設(shè)平面的法向量為

          ,

          .

          同理可得:平面的法向量.

          .

          由圖可知:二面角的平面角為鈍角,

          ∴二面角的余弦值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為橢圓E 的左、右頂點(diǎn), E的兩個(gè)焦點(diǎn)與E的短軸兩個(gè)端點(diǎn)所構(gòu)成的四邊形是正方形.

          1)求橢圓E的方程;

          2)設(shè)動(dòng)點(diǎn)),記直線E的交點(diǎn)(不同于)到x軸的距離分別為,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若一個(gè)函數(shù)當(dāng)自變量在不同范圍內(nèi)取值時(shí),函數(shù)表達(dá)式不同,我們稱這樣的函數(shù)為分段函數(shù).下面我們參照學(xué)習(xí)函數(shù)的過程與方法,探究分段函數(shù)的圖象與性質(zhì).列表:

          x

          0

          1

          2

          3

          y

          1

          2

          1

          0

          1

          2

          描點(diǎn):在平面直角坐標(biāo)系中,以自變量x的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值y為縱坐標(biāo),描出相應(yīng)的點(diǎn),如圖所示.

          1)如圖,在平面直角坐標(biāo)系中,觀察描出的這些點(diǎn)的分布,作出函數(shù)圖象;

          2)研究函數(shù)并結(jié)合圖象與表格,回答下列問題:

          ①點(diǎn),,,在函數(shù)圖象上,      ;(填,

          ②當(dāng)函數(shù)值時(shí),求自變量x的值;

          ③在直線的右側(cè)的函數(shù)圖象上有兩個(gè)不同的點(diǎn),,且,求的值;

          ④若直線與函數(shù)圖象有三個(gè)不同的交點(diǎn),求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知下列命題:

          ①在某項(xiàng)測(cè)量中,測(cè)量結(jié)果服從正態(tài)分布,若內(nèi)取值范圍概率為,則內(nèi)取值的概率為;

          ②若,為實(shí)數(shù),則“”是“”的充分而不必要條件;

          ③已知命題,則是:

          ,;

          中,“角,成等差數(shù)列”是“”的充分不必要條件;其中,所有真命題的個(gè)數(shù)是( )

          A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,第1個(gè)圖形由正三角形擴(kuò)展而成,共12個(gè)頂點(diǎn).第n個(gè)圖形是由正n+2邊形擴(kuò)展而來 ,則第n+1個(gè)圖形的頂點(diǎn)個(gè)數(shù)是 (  )

          (1) (2)(3) (4)

          A. (2n+1)(2n+2)B. 3(2n+2)C. (n+2)(n+3)D. (n+3)(n+4)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合A={x|ax2+2x+1=0aR},

          1)若A只有一個(gè)元素,試求a的值,并求出這個(gè)元素;

          2)若A是空集,求a的取值范圍;

          3)若A中至多有一個(gè)元素,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知四棱錐,底面為菱形,,上的點(diǎn),過的平面分別交,于點(diǎn),,且平面.

          (1)證明:

          (2)當(dāng)的中點(diǎn),與平面所成的角為,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】定義在R上的偶函數(shù)f(x)滿足f(x+1)=-f(x)且f(x)在[-1,0]上是增函數(shù),給出下列四個(gè)命題:

          f(x)是周期函數(shù);②f(x)的圖象關(guān)于x=1對(duì)稱;③f(x)在[1,2]上是減函數(shù);④f(2)=f(0).

          其中正確命題的序號(hào)是____________.(請(qǐng)把正確命題的序號(hào)全部寫出來)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),

          )當(dāng)時(shí),證明:為偶函數(shù);

          )若上單調(diào)遞增,求實(shí)數(shù)的取值范圍

          )若,求實(shí)數(shù)的取值范圍,使上恒成立.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案