日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知,其中(x∈R).
          (1)求f(x)的最小正周期及單調(diào)遞增區(qū)間;
          (2)在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,若f(A)=2,b=1,△ABC面積為,求:邊a的長及△ABC的外接圓半徑R.
          【答案】分析:先利用向量數(shù)量積的運(yùn)算性質(zhì)求得函數(shù)f(x)的解析式,再利用二倍角公式和兩角和的正弦公式將函數(shù)化為y=Asin(ωx+φ)型函數(shù),
          (1)利用函數(shù)周期計(jì)算公式可得其最小正周期,將內(nèi)層函數(shù)置于外層函數(shù)的單調(diào)增區(qū)間上,解不等式即可得函數(shù)的單調(diào)遞增區(qū)間;
          (2)先由f(A)=2,結(jié)合角A的取值范圍計(jì)算角A的值,再利用三角形面積公式和已知的面積,計(jì)算邊長c的值,進(jìn)而利用余弦定理求邊長a的值,最后利用正弦定理求三角形的外接圓半徑
          解答:解:(1)=1+cos2x+sin2x=1+2(cos2x+sin2x)=
          ∴f(x)的最小正周期T=
          由-+2kπ≤2x++2kπ,得  (k∈Z)
          ∴函數(shù)f(x)的單調(diào)遞增區(qū)間(k∈Z)
          (2)∵,∴
          <2A+<π,∴2A+=

          ∵△ABC面積為S=bcsinA=
          ∴c=6

          ,

          點(diǎn)評(píng):本題主要考查了向量數(shù)量積運(yùn)算性質(zhì),三角變換公式的運(yùn)用,三角形面積公式、余弦定理、正弦定理的運(yùn)用,屬中檔題
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          f(x)=2cos2x+
          3
          sin2x+a
          (其中a∈R).已知:
          (Ⅰ)若x∈R,求f(x)的最小正周期;
          (Ⅱ)若f(x)在[-
          π
          6
          ,
          π
          6
          ]
          上最大值與最小值之和3,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2008•臨沂二模)已知命題p:存在x∈R,使tanx=1,命題q:x2-3x+2<0的解集是{x|1<x<2},下列結(jié)論:
          ①命題“p∧q”是真命題;
          ②命題“p∧¬q”是假命題;
          ③命題“¬p∨q”是真命題;
          ④命題“¬p∨¬q”是假命題.
          其中正確的是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知下列命題:
          ①命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x”;
          ②已知p,q為兩個(gè)命題,若“p∨q”為假命題,則“?p∨?q”為真命題;
          ③“a>2”是“a>5”的充分不必要條件;
          ④“若xy=0,則x=0且y=0”的逆否命題為真命題.
          其中所有真命題的序號(hào)為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012年上海市虹口區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

          已知,其中,(x∈R).
          (1)求f(x)的最小正周期及單調(diào)遞增區(qū)間;
          (2)在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,若f(A)=2,b=1,△ABC面積為,求:邊a的長及△ABC的外接圓半徑R.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案