日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知兩個函數(shù)f(x)和g(x)的定義域和值域都是集合{1,2,3},其定義如下表:則方程g(f(x))=x的解集為(

          x

          1

          2

          3

          f(x)

          2

          3

          1

          x

          1

          2

          3

          g(x)

          3

          2

          1


          A.{1}
          B.{2}
          C.{3}
          D.

          【答案】C
          【解析】解:當(dāng)x=1時,g(f(1))=g(2)=2,不合題意. 當(dāng)x=2時,g(f(2))=g(3)=1,不合題意.
          當(dāng)x=3時,g(f(3))=g(1)=3,符合題意.
          故選C.
          【考點精析】認(rèn)真審題,首先需要了解函數(shù)的定義域及其求法(求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負(fù)值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當(dāng)對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負(fù))指數(shù)冪的底數(shù)不能為零),還要掌握函數(shù)的值域(求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的)的相關(guān)知識才是答題的關(guān)鍵.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知橢圓C: =1(a>b>0)的離心率為 ,以橢圓C的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與橢圓C交于點M與點N.
          (1)求橢圓C的方程;
          (2)求 的最小值;
          (3)設(shè)點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標(biāo)原點,求證:|OR||OS|是定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,半徑為1,圓心角為 的圓弧 上有一點C.
          (1)若C為圓弧AB的中點,點D在線段OA上運動,求| + |的最小值;
          (2)若D,E分別為線段OA,OB的中點,當(dāng)C在圓弧 上運動時,求 的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】觀察以下三個等式: sin215°﹣sin245°+sin15°cos45°=﹣ ,
          sin220°﹣sin250°+sin20°cos50°=﹣ ,
          sin230°﹣sin260°+sin30°cos60°=﹣ ;
          猜想出一個反映一般規(guī)律的等式:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)=2ax﹣ +lnx在x=1與x= 處都取得極值. (Ⅰ) 求a,b的值;
          (Ⅱ)設(shè)函數(shù)g(x)=x2﹣2mx+m,若對任意的x1∈[ ,2],總存在x2∈[ ,2],使得g(x1)≥f(x2)﹣lnx2 , 求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對正整數(shù)n,設(shè)曲線y=xn(1﹣x)在x=2處的切線與y軸交點的縱坐標(biāo)為an , 則數(shù)列 的前n項和的公式是(
          A.2n
          B.2n﹣2
          C.2n+1
          D.2n+1﹣2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)y=f(x)對任意的x∈(﹣ , )滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),則下列不等式成立的是(
          A. f(﹣ )<f(﹣
          B. f( )<f( )??
          C.f(0)>2f(
          D.f(0)> f(

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四面體中,平面平面 , ,

          (Ⅰ)若, ,求四面體的體積;

          (Ⅱ)若二面角,求異面直線所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)f(x)=ax3+bx2+cx的極小值為﹣8,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過點 ,如圖所示,
          (1)求f(x)的解析式;
          (2)若對x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案