日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1
          的一個焦點與拋物線y2=4x的焦點重合,且雙曲線的離心率等于
          5
          ,則該雙曲線的方程為( 。
          A、5x2-
          4
          5
          y2=1
          B、
          x2
          5
          -
          y2
          4
          =1
          C、
          y2
          5
          -
          x2
          4
          =1
          D、5x2-
          5
          4
          y2=1
          分析:先根據(jù)拋物線方程求得焦點坐標,進而確定雙曲線的焦點,求得雙曲線中的c,根據(jù)離心率進而求得長半軸,最后根據(jù)b2=c2-a2求得b,則雙曲線的方程可得.
          解答:解:拋物線y2=4x的焦點F(1,0),
          c=1,e=
          c
          a
          =
          1
          a
          =
          5
          a2=
          1
          5
          ,b2=c2-a2=
          4
          5

          雙曲線的方程為5x2-
          5
          4
          y2=1

          故選D
          點評:本題主要考查了雙曲線的標準方程.考查了對圓錐曲線基礎(chǔ)知識的綜合運用.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          已知雙曲線
          x2
          a2
          -
          y2
          7
          =1
          ,直線l過其左焦點F1,交雙曲線的左支于A、B兩點,且|AB|=4,F(xiàn)2為雙曲線的右焦點,△ABF2的周長為20,則此雙曲線的離心率e=
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1
          的一個焦點與拋物線y2=4x的焦點重合,且該雙曲線的離心率為
          5
          ,則該雙曲線的漸近線方程為( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1(b>a>0)
          ,O為坐標原點,離心率e=2,點M(
          5
          3
          )
          在雙曲線上.
          (1)求雙曲線的方程;
          (2)若直線l與雙曲線交于P,Q兩點,且
          OP
          OQ
          =0
          .問:
          1
          |OP|2
          +
          1
          |OQ|2
          是否為定值?若是請求出該定值,若不是請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點
          (-2,1)
          (-2,1)
          ;
          (2)已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1的一條漸近線方程為y=
          4
          3
          x,則雙曲線的離心率為
          5
          3
          5
          3

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知雙曲線
          x2
          a2
          -
          y2
          b2
          =1
          (a>0,b>0)滿足
          a1
          b
          2
           |=0
          ,且雙曲線的右焦點與拋物線y2=4
          3
          x
          的焦點重合,則該雙曲線的方程為
           

          查看答案和解析>>

          同步練習冊答案