日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB為圓O的直徑,點(diǎn)E,F(xiàn)在圓O上,且AB//EF,AB=2EF,矩形ABCD所在的平面和圓O所在的平面互相垂直.

          I證明:OF//平面BEC;

          證明:平面ADF平面BCF.

          【答案】)(詳見解析.

          【解析】

          試題分析:要證明線面平行,需先證明線線平行,根據(jù)梯形內(nèi)的線線關(guān)系可得,這樣根據(jù)線面平行的判定定理,可得線面平行;要證明面面垂直,需先證明線面垂直,而要證明線面垂直,需先證明線線垂直,即證明,這樣就可證明平面,最后證明證明得到面面垂直.

          試題解析:證明:為圓的直徑,,

          ,

          四邊形為平行四邊形,

          平面,平面,

          平面.

          四邊形為矩形,,

          平面與圓所在平面垂直,且交線為

          平面

          平面,,

          為圓的直徑,

          ,平面,

          平面,

          平面平面.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)是兩條不同的直線, 是三個不同的平面,給出下列四個命題:

          ①若,則 ②若,則

          ③若,則 ④若,則

          其中正確命題的序號是( )

          A. ①和② B. ②和③ C. ③和④ D. ①和④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),其中為實(shí)數(shù).

          )當(dāng)時,求函數(shù)上的最大值和最小值;

          )求函數(shù)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x﹣﹣(a+2)lnx,其中實(shí)數(shù)a≥0.

          (1)若a=0,求函數(shù)f(x)在x∈[1,3]上的最值;

          (2)若a>0,討論函數(shù)f(x)的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,(其中).

          (1)求;

          (2)試比較的大小,并用數(shù)學(xué)歸納法給出證明過程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知.

          )證明:;

          )證明:當(dāng)時,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知三次函數(shù),

          (1)若函數(shù)過點(diǎn)且在點(diǎn)處的切線方程是,求函數(shù)的解析式;

          (2)在(1)的條件下,若對于區(qū)間上任意兩個自變量的值,

          都有,求實(shí)數(shù)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若關(guān)于x的方程22x+2xa+a+1=0有實(shí)根,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,底面為線段上一點(diǎn),的中點(diǎn).

          (1)證明:平面;

          (2)求點(diǎn)到平面的距離.

          查看答案和解析>>

          同步練習(xí)冊答案