【題目】現(xiàn)安排甲、乙、丙、丁、戊5名同學(xué)參加廈門市華僑博物院志愿者服務(wù)活動(dòng),每人從事禮儀、導(dǎo)游、翻譯、講解四項(xiàng)工作之一,每項(xiàng)工作至少有一人參加. 甲、乙不會(huì)導(dǎo)游但能從事其他三項(xiàng)工作,丙、丁、戊都能勝任四項(xiàng)工作,則不同安排方案的種數(shù)是____________.(用數(shù)字作答)
【答案】126.
【解析】分析:根據(jù)題意,按甲乙的分工情況不同分兩種情況討論,①甲乙一起參加除了導(dǎo)游的三項(xiàng)工作之一,②甲乙不同時(shí)參加一項(xiàng)工作;分別由排列、組合公式計(jì)算其情況數(shù)目,進(jìn)而由分類計(jì)數(shù)的加法公式,計(jì)算可得答案.
詳解:
根據(jù)題意,分情況討論,①甲乙一起參加除了導(dǎo)游的三項(xiàng)工作之一:種;
②甲乙不同時(shí)參加一項(xiàng)工作,進(jìn)而又分為2種小情況;
1.丙、丁、戌三人中有兩人承擔(dān)同一份工作,有種;
2.甲或乙與丙、丁、戌三人中的一人承擔(dān)同一份工作:種;
由分類計(jì)數(shù)原理,可得共有18+36+72=126種,
故答案為126.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所著《周髀算經(jīng)》中用趙爽弦圖給出了勾股定理的絕妙證明,如圖是趙爽弦圖,圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成朱色和黃色,若朱色的勾股形中較大的銳角α為 ,現(xiàn)向該趙爽弦圖中隨機(jī)地投擲一枚飛鏢,則飛鏢落在黃色的小正方形內(nèi)的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|﹣2|x﹣a|,a>0. (Ⅰ)當(dāng)a=1時(shí),求不等式f(x)>1的解集;
(Ⅱ)若f(x)的圖象與x軸圍成的三角形面積大于6,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) 是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體的棱長(zhǎng)為
,
分別是棱
,
的中點(diǎn),過直線
的平面分別與棱
.
交于
,設(shè)
,
,給出以下四個(gè)命題:
①平面
平面
;②當(dāng)且僅當(dāng)
時(shí),四邊形
的面積最。 ③四邊形
周長(zhǎng)
,
是單調(diào)函數(shù);④四棱錐
的體積
為常函數(shù);
以上命題中真命題的序號(hào)為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信是現(xiàn)代生活進(jìn)行信息交流的重要工具,據(jù)統(tǒng)計(jì),某公司名員工中
的人使用微信,其中每天使用微信時(shí)間在一小時(shí)以內(nèi)的有
人,其余每天使用微信在一小時(shí)以上.若將員工年齡分成青年(年齡小于
歲)和中年(年齡不小于
歲)兩個(gè)階段,使用微信的人中
是青年人.若規(guī)定:每天使用微信時(shí)間在一小時(shí)以上為經(jīng)常使用微信,經(jīng)常使用微信的員工中
是青年人.
(Ⅰ)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出列聯(lián)表;
青年人 | 中年人 | 合計(jì) | |
經(jīng)常使用微信 | |||
不經(jīng)常使用微信 | |||
合計(jì) |
(Ⅱ)由列聯(lián)表中所得數(shù)據(jù),是否有的把握認(rèn)為“經(jīng)常使用微信與年齡有關(guān)”?
(Ⅲ)采用分層抽樣的方法從“經(jīng)常使用微信”的人中抽取人,從這
人中任選
人,求事件
“選出的
人均是青年人”的概率.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校某研究性學(xué)習(xí)小組在對(duì)學(xué)生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)與聽課時(shí)間
(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當(dāng)
時(shí),圖象是二次函數(shù)圖象的一部分,其中頂點(diǎn)
,過點(diǎn)
;當(dāng)
時(shí),圖象是線段BC,其中
.根據(jù)專家研究,當(dāng)注意力指數(shù)大于62時(shí),學(xué)習(xí)效果最佳.要使得學(xué)生學(xué)習(xí)效果最佳,則教師安排核心內(nèi)容的時(shí)間段為____________.(寫成區(qū)間形式)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若對(duì)定義域內(nèi)任意x,都有(a為正常數(shù)),則稱函數(shù)
為“a距”增函數(shù).
(1)若,
(0,
),試判斷
是否為“1距”增函數(shù),并說明理由;
(2)若,
R是“a距”增函數(shù),求a的取值范圍;
(3)若,
(﹣1,
),其中k
R,且為“2距”增函數(shù),求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>
,若存在閉區(qū)間
,使得函數(shù)
滿足:①
在
上是單調(diào)函數(shù);②
在
上的值域是
,則稱區(qū)間
是函數(shù)
的“和諧區(qū)間”.下列結(jié)論錯(cuò)誤的是( )
A. 函數(shù)存在“和諧區(qū)間”
B. 函數(shù)不存在“和諧區(qū)間”
C. 函數(shù)存在“和諧區(qū)間”
D. 函數(shù) (
且
)不存在“和諧區(qū)間”
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com