日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知點A(1,0),B(0,1)和互不相同的點P1,P2,P3,…,Pn,…,滿足
          OPn
          =an
          OA
          +bn
          OB
          (n∈N*),其中an,bn分別為等差數(shù)列和等比數(shù)列,O為坐標(biāo)原點,P1是線段AB的中點.
          (1)求a1,b1的值;
          (2)判斷點P1,P2,P3,…,Pn,…能否在同一條直線上,并證明你的結(jié)論;
          (3)設(shè)數(shù)列an的公差為2,在數(shù)列cn中,c1=1,c2=-13,cn+2-2cn+1+cn=an(n∈N*),求出cn取得最小值時n的值.
          分析:(1)由
          OPn
          =an
          OA
          +bn
          OB
          ,得Pn(an,bn),又P1是AB中點,則P1(
          1
          2
          1
          2
          )
          ,即a1=b1=
          1
          2

          (2)設(shè)數(shù)列an的公差為d,bn的公比為q,因為P1,P2,P3,,Pn,是互不相同的點,可得d=0,q=1不會同時成立.當(dāng)d=0時,點P1,P2,P3,,Pn,均在直線x=
          1
          2
          上.當(dāng)q=1時,點P1,P2,P3,,Pn,均在直線y=
          1
          2
          上.關(guān)鍵是當(dāng)d≠0,q≠1時,點P1,P2,P3,,Pn,不會在同一條直線上,只要驗證P1,P2,P3,不共線即可,
          (3)由an=
          1
          2
          +(n-1)×2=2n-
          3
          2
          ,可得(cn+2-cn+1)-(cn+1-cn)=2n-
          3
          2
          (n∈N*)
          ,依此累加求解.
          解答:解:(1)由
          OPn
          =an
          OA
          +bn
          OB
          ,得
          OPn
          =(an,bn)
          ,即Pn(an,bn),
          所以P1(a1,b1),P1是AB中點,
          P1(
          1
          2
          ,
          1
          2
          )
          ,即a1=b1=
          1
          2


          (2)設(shè)數(shù)列an的公差為d,bn的公比為q,因為P1,P2,P3,,Pn,是互不相同的點,
          所以,d=0,q=1不會同時成立.
          當(dāng)d=0時,an=a1=
          1
          2
          (n∈N*),
          此時,點P1,P2,P3,,Pn,均在直線x=
          1
          2
          上.
          當(dāng)q=1時,bn=b1=
          1
          2
          ,此時,點P1,P2,P3,,Pn,均在直線y=
          1
          2
          上.
          當(dāng)d≠0,q≠1時,點P1,P2,P3,,Pn,不會在同一條直線上,
          因為P1(
          1
          2
          ,
          1
          2
          )
          P2(
          1
          2
          +d,
          1
          2
          q)
          P3(
          1
          2
          +2d,
          1
          2
          q2)
          ,
          所以,kP1P2=
          q-1
          2d
          ,kP2P3=
          q(q-1)
          2d
          ,
          因為q≠1,
          所以,kP1P2kP2P3
          點P1,P2,P3不會同一條直線上,即點P1,P2,P3,,Pn,不會在同一條直線上.

          (3)由已知an=
          1
          2
          +(n-1)×2=2n-
          3
          2
          ,(cn+2-cn+1)-(cn+1-cn)=2n-
          3
          2
          (n∈N*)
          ,
          所以,(c3-c2)-(c2-c1)=2×1-
          3
          2

          (c4-c3)-(c3-c2)=2×2-
          3
          2

          (cn-cn-1)-(cn-1-cn-2)=2(n-2)-
          3
          2
          (n>2)

          疊加,得cn-cn-1=(c2-c1)+2[1+2++(n-2)]-
          3
          2
          (n-2)=n2-
          9
          2
          n-9(n>2)
          ,
          解cn-cn-1≥0,即n2-
          9
          2
          n-9≥0(n>2)
          ,
          得n≥6,
          所以,c2>c3>c4>c5=c6,c5=c6<c7<,結(jié)合c1=1,c2=-13,c1>c2>c3>c4>c5=c6,c5=c6<c7<,
          所以,cn最小值時n的值為5或6.
          點評:本題主要考查知識間的滲透問題,由向量形式和坐標(biāo)形式的轉(zhuǎn)化,曲線與方程的轉(zhuǎn)化,點的橫縱坐標(biāo)是一個數(shù)列用數(shù)列知識研究其關(guān)系.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知點A(-1,0)與點B(1,0),C是圓x2+y2=1上的動點,連接BC并延長至D,使得|CD|=|BC|,求AC與OD的交點P的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點A(-1,0),B(0,2),點P是圓(x-1)2+y2=1上任意一點,則△PAB面積的最大值是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點A(1,0),B(0,1)和互不相同的點P1,P2,P3,…,Pn,…,滿足
          OPn
          =an
          OA
          +bn
          OB
          (n∈N*)
          ,O為坐標(biāo)原點,其中an、bn分別為等差數(shù)列和等比數(shù)列,若P1是線段AB的中點,設(shè)等差數(shù)列公差為d,等比數(shù)列公比為q,當(dāng)d與q滿足條件
           
          時,點P1,P2,P3,…,Pn,…共線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點A(-1,0),B(1,0),M是平面上的一動點,過M作直線l:x=4的垂線,垂足為N,且|MN|=2|MB|.
          (1)求M點的軌跡C的方程;
          (2)當(dāng)M點在C上移動時,|MN|能否成為|MA|與|MB|的等比中項?若能求出M點的坐標(biāo),若不能說明理.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          點A到圖形C上每一個點的距離的最小值稱為點A到圖形C的距離.已知點A(1,0),圓C:x2+2x+y2=0,那么平面內(nèi)到圓C的距離與到點A的距離之差為1的點的軌跡是( 。

          查看答案和解析>>

          同步練習(xí)冊答案