日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,圓柱OO1內(nèi)有一個(gè)三棱柱ABC-A1B1C1,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O直徑.
          (I)證明:平面A1ACC1⊥平面B1BCC1;
          (Ⅱ)設(shè)AB=AA1,在圓柱OO1內(nèi)隨機(jī)選取一點(diǎn),記該點(diǎn)取自于三棱柱ABC-A1B1C1內(nèi)的概率為P.
          (i)當(dāng)點(diǎn)C在圓周上運(yùn)動(dòng)時(shí),求P的最大值;
          (ii)記平面A1ACC1與平面B1OC所成的角為θ(0°≤θ≤90°),當(dāng)P取最大值時(shí),求cosθ的值.
          分析:(I)欲證平面A1ACC1⊥平面B1BCC1,關(guān)鍵是找線面垂直,根據(jù)直線與平面垂直的判定定理可知BC⊥平面A1ACC1
          (Ⅱ)(i)根據(jù)AC2+BC2=AB2為定值可求出V1的最大值,從而得到p=
          V1
          V
          的最大值.
          (ii)p取最大值時(shí),OC⊥AB,于是以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系O-xyz,求出平面A1ACC1的一個(gè)法向量與平面B1OC的一個(gè)法向量,然后求出兩法向量的夾角從而得到二面角的余弦值.
          解答:解:(Ⅰ)因?yàn)锳A1⊥平面ABC,BC?平面ABC,所以AA1⊥BC,
          因?yàn)锳B是圓O直徑,所以BC⊥AC,又AC∩AA1=A,所以BC⊥平面A1ACC1,
          而B(niǎo)C?平面B1BCC1,所以平面A1ACC1⊥平面B1BCC1
          (Ⅱ)(i)設(shè)圓柱的底面半徑為r,則AB=AA1=2r,
          故三棱柱ABC-A1B1C1的體積為 V1=
          1
          2
          AC•BC•2r
          =AC•BC•r,
          又因?yàn)锳C2+BC2=AB2=4r2,
          所以 AC•BC≤
          AC2+BC2
          2
          =2r2,當(dāng)且僅當(dāng) AC=BC=
          2
          r
          時(shí)等號(hào)成立,
          從而V1≤2r3,而圓柱的體積V=πr2•2r=2πr3
          故p=
          V1
          V
          2r3
          r3
          =
          1
          π
          ,
          當(dāng)且僅當(dāng) AC=BC=
          2
          r
          ,即OC⊥AB時(shí)等號(hào)成立,
          所以p的最大值是
          1
          π

          (ii)p取最大值時(shí),OC⊥AB,
          于是以O(shè)為坐標(biāo)原點(diǎn),
          建立空間直角坐標(biāo)系O-xyz,
          則C(r,0,0),B(0,r,0),B1(0,r,2r),
          因?yàn)锽C⊥平面A1ACC1
          所以
          BC
          =(r,-r,0)
          是平面A1ACC1的一個(gè)法向量,
          設(shè)平面B1OC的法向量
          n
          =(x,y,z)
          ,
          n
          OC
          n
          OB1
          rx=0
          ry+2rz=0
          ,
          x=0
          y=-2z

          取z=1得平面B1OC的一個(gè)法向量為
          n
          =(0,-2,1)
          ,
          因?yàn)?°<θ≤90°,
          所以 cosθ=|cos?
          n
          ,
          BC
          >|

          =|
          n
          BC
          |
          n
          |•|
          BC
          |
          |

          =|
          2r
          5
          2
          r
          |

          =
          10
          5
          點(diǎn)評(píng):本小題主要考查直線與直線、直線與平面、平面與平面的位置關(guān)系,以及幾何體的體積、幾何概型等基礎(chǔ)知識(shí),考查空間想象能力、運(yùn)算求解能力、推理論證能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想、必然與或然思想.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,圓柱OO1內(nèi)有一個(gè)三棱柱ABC-A1B1C1,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O的直徑.
          (1)證明:平面A1ACC1⊥平面B1BCC1
          (2)設(shè)AB=AA1,在圓柱OO1內(nèi)隨機(jī)選取一點(diǎn),記該點(diǎn)取自于三棱柱ABC-A1B1C1內(nèi)的概率為P.當(dāng)點(diǎn)C在圓周上運(yùn)動(dòng)時(shí),記平面A1ACC1與平面B1OC所成的角為θ(0°<θ≤90°),當(dāng)P取最大值時(shí),求cosθ的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,圓柱OO1內(nèi)有一個(gè)三棱柱ABC-A1B1C1,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O的直徑.
          (1)證明:O1A∥平面B1OC;
          (2)證明:平面A1ACC1⊥平面B1BCC1;
          (3)設(shè)AB=AA1=2,在圓柱OO1內(nèi)隨機(jī)選取一點(diǎn),記該點(diǎn)取自于三棱柱ABC-A1B1C1內(nèi)的概率為P,當(dāng)點(diǎn)C在圓周上運(yùn)動(dòng)時(shí),求P的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,圓柱OO1內(nèi)有一個(gè)三棱柱ABC-A1B1C1,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O直徑,AA1=AC=CB=2.
          (Ⅰ)證明:平面A1ACC1⊥平面B1BCC1;
          (Ⅱ)設(shè)E,F(xiàn)分別為AC,BC上的動(dòng)點(diǎn),且CE=BF=x,問(wèn)當(dāng)x為何值時(shí),三棱錐C-EC1F的體積最大,最大值為多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,圓柱OO1內(nèi)有一個(gè)三棱柱ABC-A1B1C1,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O的直徑.
          (1)證明:平面A1ACC1⊥平面B1BCC1;
          (2)設(shè)AB=AA1=2,點(diǎn)C為圓柱OO1底面圓周上一動(dòng)點(diǎn),記三棱柱ABC-A1B1C1的體積為V.
          ①求V的最大值;
          ②記平面A1ACC1與平面B1OC所成的角為θ(0°<θ≤90°),當(dāng)V取最大值時(shí),求cosθ的值;
          ③當(dāng)V取最大值時(shí),在三棱柱ABC-A1B1C1的側(cè)面A1ACC1內(nèi)(包括邊界)的動(dòng)點(diǎn)P到直線B1C1的距離等于它到直線AC的距離,求動(dòng)點(diǎn)P到點(diǎn)C距離|PC|的最值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案