日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知曲線C是動點M到兩個定點O(0,0)、A(3,0)距離之比為的點的軌跡.
          (1)求曲線C的方程;
          (2)求過點N(1,3)與曲線C相切的直線方程.
          【答案】分析:(1)設點M(x,y),利用兩點之間的距離公式,將|OM|、|AM|表示成關于x、y的式子,利用它們的距離之比為建立等式,化簡整理即可得到曲線C的方程;
          (2)由(1)得曲線C是以(-1,0)為圓心,半徑r=2的圓.然后按直線的斜率是否存在進行分類討論,結合點到直線的距離公式加以計算,即可得到兩條切線的方程.
          解答:解:(1)設點M(x,y),則
          |OM|=,|AM|=
          =,∴|AM|=2|OM|即=2…4分
          兩邊平方整理,得:x2+y2+2x-3=0,即為所求曲線C的方程.…6分
          (2)由(1)得x2+y2+2x-3=0,整理得(x+1)2+y2=4
          ∴曲線C是以(-1,0)為圓心,半徑r=2的圓.
          i)當過點N(1,3)的直線的斜率不存在時,直線方程為x=1,顯然與圓相切;…8分
          ii) 當過點N(1,3)的直線的斜率存在時,設方程為y-3=k(x-1)
          即kx-y+3-k=0                               …9分
          ∵直線與圓相切.得圓心到該直線的距離等于半徑,
          ,解之得k=,…11分
          可得直線方程為5x-12y+31=0                 …12分
          所以過點N(1,3)與曲線C相切的直線方程為x=1或5x-12y+31=0.…13分
          點評:本題給出滿足條件的動點,求軌跡方程并求與曲線相切的直線方程,著重考查了直線與圓的位置關系和軌跡方程的求法等知識,屬于中檔題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知曲線C是動點M到兩個定點O(0,0)、A(3,0)距離之比為
          12
          的點的軌跡.
          (1)求曲線C的方程;
          (2)求過點N(1,3)與曲線C相切的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2008年普通高等學校招生全國統(tǒng)一考試(浙江卷)、數(shù)學(理科)試卷含詳細解答 題型:044

          已知曲線C是到點P和到直線y=-距離相等的點的軌跡.l是過點Q(-1,0)的直線,M是C上(不在l上)的動點;A,B在l上,MA⊥l,MB⊥x軸(如圖).

          (Ⅰ)求曲線C的方程;

          (Ⅱ)求出直線l的方程,使得為常數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源:浙江省高考真題 題型:解答題

          已知曲線C是到點P和到直線y=距離相等的點的軌跡,l是過點Q(-1,0)的直線,M是C上(不在l上)的動點;A、B在l上,MA⊥l,MB⊥x軸(如圖),
          (Ⅰ)求曲線C的方程;
          (Ⅱ)求出直線l的方程,使得為常數(shù)。

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知曲線C是動點M到兩個定點O(0,0)、A(3,0)距離之比為
          1
          2
          的點的軌跡.
          (1)求曲線C的方程;
          (2)求過點N(1,3)與曲線C相切的直線方程.

          查看答案和解析>>

          同步練習冊答案