日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設F1,F(xiàn)2分別是橢圓
          x2
          9
          +y2=1
          的左、右焦點.若點P在橢圓上,且
          PF1
          PF2
          =0
          ,則|
          PF1
          +
          PF2
          |
          =( 。
          分析:先根據(jù)橢圓方程求得橢圓的半焦距c,根據(jù)
          PF1
          PF2
          =0
          得出PF1⊥PF2,推斷出點P在以 2
          2
          為半徑,以原點為圓心的圓上,進而求得P點到原點的距離,根據(jù)向量的加法法則得|
          PF1
          +
          PF2
          |
          =| 2
          PO
          |
          ,從而解決問題.
          解答:解:由題意半焦距c=
          9-1
          =2
          2
          ,
          又根據(jù)
          PF1
          PF2
          =0
          得出PF1⊥PF2,
          ∴點P在以 2
          2
          為半徑,以原點為圓心的圓上,
          x2+y2 =8
          x2
          9
          +y2=1
          ,解得x2=
          63
          8
          ,y2=
          1
          8

          ∴P到坐標原點的距離為:|
          PO
          |
          =
          x2+y2
          =2
          2
          ,
          |
          PF1
          +
          PF2
          |
          =| 2
          PO
          |
          =2×2
          2
          =4
          2
          ,
          故選D.
          點評:本題主要考查了橢圓的簡單性質(zhì),橢圓與圓的位置關(guān)系.考查了考生對橢圓基礎(chǔ)知識的綜合運用.屬基礎(chǔ)題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          設F1,F(xiàn)2分別是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右焦點,若在直線x=
          a2
          c
          上存在點P,使線段PF1的中垂線過點F2,則橢圓的離心率的取值范圍是
          3
          3
          ,1)
          3
          3
          ,1)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          設F1,F(xiàn)2分別是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左右焦點,若橢圓C上的一點A(1,
          3
          2
          )到F1,F(xiàn)2的距離之和為4.
          (1)求橢圓方程;
          (2)若M,N是橢圓C上兩個不同的點,線段MN的垂直平分線與x軸交于點P,求證:|
          OP
          |<
          1
          2

          (3)若M,N是橢圓C上兩個不同的點,Q是橢圓C上不同于M,N的任意一點,若直線QM,QN的斜率分別為KQM•KQN.問:“點M,N關(guān)于原點對稱”是KQM•KQN=-
          3
          4
          的什么條件?證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2009•南匯區(qū)二模)設F1、F2分別是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右焦點,其右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍.
          (1)求橢圓的方程;
          (2)若P是該橢圓上的一個動點,求
          PF1
          PF2
          的最大值和最小值;
          (3)是否存在過點A(5,0)的直線l與橢圓交于不同的兩點C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•安徽)設橢圓E:
          x2
          a2
          +
          y2
          1-a2
          =1
          的焦點在x軸上
          (1)若橢圓E的焦距為1,求橢圓E的方程;
          (2)設F1,F(xiàn)2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內(nèi)的點,直線F2P交y軸于點Q,并且F1P⊥F1Q,證明:當a變化時,點P在某定直線上.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2009•南匯區(qū)二模)設F1、F2分別是橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右焦點,其右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍.
          (1)求橢圓的方程;
          (2)若P是該橢圓上的一個動點,求
          PF1
          PF2
          的最大值和最小值;
          (3)若P是該橢圓上的一個動點,點A(5,0),求線段AP中點M的軌跡方程.

          查看答案和解析>>

          同步練習冊答案