日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知直線l交橢圓4x2+5y2=80于M、N兩點(diǎn),橢圓與y軸的正半軸交于B點(diǎn),若△BMN的重心恰好落在橢圓的右焦點(diǎn)上,則直線l的方程是(    )       

          A. 6x-5y-28=0   B. 6x+5y-28=0    

          C. 5x+6y-28=0    D. 5x-6y-28=0

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,直線x-y+b=0是拋物線y2=4x的一條切線.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)過點(diǎn)S(0,
          1
          3
          )的動(dòng)直線L交橢圓C于A、B兩點(diǎn).問:是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過點(diǎn)T?若存在,求點(diǎn)T坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          x2
          a2
          +
          y2
          b2
          =1 (a>b>0)
          的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,且直線x-y+b=0是拋物線y2=4x的一條切線.
          (Ⅰ)求橢圓的方程;
          (Ⅱ)過點(diǎn)S (0, -
          1
          2
          )
          且斜率為1的直線l交橢圓C于M、N兩點(diǎn),求|MN|的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓
          y2
          a2
          +
          x2
          b2
          =1 (a>b>0)
          的離心率e滿足3, 
          1
          e
          , 
          4
          9
          成等比數(shù)列,且橢圓上的點(diǎn)到焦點(diǎn)的最短距離為2-
          3
          .過點(diǎn)(2,0)作直線l交橢圓于點(diǎn)A,B.
          (1)若AB的中點(diǎn)C在y=4x(x≠0)上,求直線l的方程;
          (2)設(shè)橢圓中心為,問是否存在直線l,使得的面積滿足2S△AOB=|OA|•|OB|?若存在,求出直線AB的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知F1,F(xiàn)2分別是橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左、右焦點(diǎn),且橢圓C的離心率e=
          1
          2
          ,F(xiàn)1也是拋物線C1:y2=-4x的焦點(diǎn).
          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過點(diǎn)F2的直線l交橢圓C于D,E兩點(diǎn),且2
          DF2
          =
          F2E
          ,點(diǎn)E關(guān)于x軸的對(duì)稱點(diǎn)為G,求直線GD的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓E:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的右焦點(diǎn)F2與拋物線y2=4x的焦點(diǎn)重合,過F2作與x軸垂直的直線交橢圓于S,T兩點(diǎn),交拋物線于C,D兩點(diǎn),且
          |CD|
          |ST|
          =2
          2

          (I)求橢圓E的標(biāo)準(zhǔn)方程;
          (Ⅱ)設(shè)Q(2,0),過點(diǎn)(-1,0)的直線l交橢圓E于M、N兩點(diǎn).
          (i)當(dāng)
          QM
          QN
          =
          19
          3
          時(shí),求直線l的方程;
          (ii)記△QMN的面積為S,若對(duì)滿足條件的任意直線l,不等式S>λtan∠MQN恒成立,求λ的最小值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案