日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在如圖所示的幾何體中,平面ACE⊥平面ABCD,四邊形ABCD 為平行四邊形,∠CAD=90°,EF∥BC,EF= BC,AC= ,AE=EC=1.
          (1)求證:CE⊥AF;
          (2)若二面角E﹣AC﹣F 的余弦值為 ,求點(diǎn)D 到平面ACF 的距離.

          【答案】
          (1)證明:∵平面ACE⊥平面ABCD,且平面ACE∩平面ABCD=AC,

          ∵AD⊥AC,∴AD⊥平面AEC… CE平面AEC,∴AD⊥CE,

          ,

          ∴AC2=AE2+CE2,

          ∴AE⊥EC∵EF∥BC,BC∥AD∴EF∥AD,即A、D、E、F共面

          又AE∩AD=D,∴CE⊥平面ADEF

          ∵AF面ADEF,

          ∴CE⊥AF


          (2)解:因為平面ACE⊥平面ABCD,∠CAD=90°,

          如圖以A為原點(diǎn)建立空間直角坐標(biāo)系O﹣xyz

          設(shè)AD=2a,則

          由AD⊥面ACE知平面ACE的一個法向量

          設(shè)平面ACF的一個法向量 ,因為 ,取 ,則

          ,

          因為二面角E﹣AC﹣F的余弦值為

          所以 ,即a=1

          所以

          設(shè)點(diǎn)D到平面ACF的距離為d,則

          所以點(diǎn)D到平面ACF的距離


          【解析】(Ⅰ)證明AD⊥平面AEC,推出AD⊥CE,AE⊥EC,推出CE⊥平面ADEF,然后證明CE⊥AF.(Ⅱ)以A為原點(diǎn)建立空間直角坐標(biāo)系O﹣xyz,設(shè)AD=2a,求出平面ACE的一個法向量,平面ACF的一個法向量利用二面角E﹣AC﹣F的余弦值為 ,求出a,設(shè)點(diǎn)D到平面ACF的距離為d,利用公式求解即可.
          【考點(diǎn)精析】關(guān)于本題考查的直線與平面垂直的性質(zhì),需要了解垂直于同一個平面的兩條直線平行才能得出正確答案.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,該程序運(yùn)行后輸出的結(jié)果是(
          A.6
          B.8
          C.10
          D.12

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有垣厚五尺,兩鼠對穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.問幾何日相逢?各穿幾何?”,翻譯成今天的話是:一只大鼠和一只小鼠分別從的墻兩側(cè)面對面打洞,已知第一天兩鼠都打了一尺長的洞,以后大鼠每天打的洞長是前一天的2倍,小鼠每天打的洞長是前一天的一半,已知墻厚五尺,問兩鼠幾天后相見?相見時各打了幾尺長的洞?設(shè)兩鼠x 天后相遇(假設(shè)兩鼠每天的速度是勻速的),則x=(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,AD=4,BD=8,平面PAD⊥平面ABCD,AB=2DC=4 . (Ⅰ)設(shè)M是線段PC上的一點(diǎn),證明:平面BDM⊥平面PAD
          (Ⅱ)求四棱錐P﹣ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】《九章算術(shù)均輸》中有如下問題:“今有五人分五錢,令上二人所得與下三人等,問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5 錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列,問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,乙所得為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若一條直線與一個平面成72°角,則這條直線與這個平面內(nèi)經(jīng)過斜足的直線所成角中最大角等于(
          A.72°
          B.90°
          C.108°
          D.180°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓: + =1(a>b>0),離心率為 ,焦點(diǎn)F1(0,﹣c),F(xiàn)2(0,c)過F1的直線交橢圓于M,N兩點(diǎn),且△F2MN的周長為4. (I) 求橢圓方程;
          (II) 與y軸不重合的直線l與y軸交于點(diǎn)P(0,m)(m≠0),與橢圓C交于相異兩點(diǎn)A,B且 .若 =4 ,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0 , 則稱點(diǎn)(x0 , f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點(diǎn)”;任何一個三次函數(shù)都有對稱中心,且“拐點(diǎn)”就是對稱中心.請你根據(jù)這一發(fā)現(xiàn),求:函數(shù) 對稱中心為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】當(dāng)x∈[﹣2,1]時,不等式ax3﹣x2+4x+3≥0恒成立,則實(shí)數(shù)a的取值范圍是(
          A.[﹣5,﹣3]
          B.[﹣6,﹣ ]
          C.[﹣6,﹣2]
          D.[﹣4,﹣3]

          查看答案和解析>>

          同步練習(xí)冊答案