日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】過(guò)曲線y=x2(x≥0)上某一點(diǎn)A作一切線l,使之與曲線以及x軸所圍成的圖形的面積為 ,試求:
          (1)切點(diǎn)A的坐標(biāo);
          (2)過(guò)切點(diǎn)A的切線l的方程.

          【答案】
          (1)解:設(shè)點(diǎn)A的坐標(biāo)為(a,a2),過(guò)點(diǎn)A的切線的斜率為k=y'|x=a=2a,

          故過(guò)點(diǎn)A的切線l的方程為y﹣a2=2a(x﹣a),即y=2ax﹣a2,令y=0,得

          , ,

          ∴a=1

          ∴切點(diǎn)A的坐標(biāo)為(1,1)


          (2)解:∵直線的斜率k=2×1=2,

          且過(guò)點(diǎn)(1,1)

          ∴直線方程為y=2x﹣1


          【解析】(1)欲求切點(diǎn)A的坐標(biāo),設(shè)點(diǎn)A的坐標(biāo)為(a,a2),只須在切點(diǎn)處的切線方程,故先利用導(dǎo)數(shù)求出在切點(diǎn)處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率從而得到切線的方程進(jìn)而求得面積的表達(dá)式.最后建立關(guān)于a的方程解之即得.(2)欲求過(guò)切點(diǎn)A的切線l的方程,只須求出其斜率的值即可,由(1)中求得的導(dǎo)數(shù)值即可求出切線的斜率.從而問(wèn)題解決.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知 的展開(kāi)式的系數(shù)和比(3x﹣1)n的展開(kāi)式的系數(shù)和大992,求(2x﹣ 2n的展開(kāi)式中:
          (1)二項(xiàng)式系數(shù)最大的項(xiàng);
          (2)系數(shù)的絕對(duì)值最大的項(xiàng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在正四棱錐中,已知異面直線所成的角為,給出下面三個(gè)命題:

          :若,則此四棱錐的側(cè)面積為

          :若分別為的中點(diǎn),則平面;

          :若都在球的表面上,則球的表面積是四邊形面積的倍.

          在下列命題中,為真命題的是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在正四棱錐S﹣ABCD中,E,M,N分別是BC,CD,SC的中點(diǎn),動(dòng)點(diǎn)P在線段MN上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論:①EP⊥AC;②EP∥BD;③EP∥面SBD;④EP⊥面SAC.中恒成立的為(

          A.①③
          B.③④
          C.①②
          D.②③④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知實(shí)數(shù)a,b,c,d成等比數(shù)列,且曲線y=3x﹣x3的極大值點(diǎn)坐標(biāo)為(b,c)則ad等于(
          A.2
          B.1
          C.﹣1
          D.﹣2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知定義在區(qū)間上的函數(shù)滿(mǎn)足,且當(dāng)時(shí),.

          (1)求的值;

          (2)證明:為單調(diào)增函數(shù);

          (3)若,求上的最值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)f(x)=ex﹣ax﹣2.
          (1)求f(x)的單調(diào)區(qū)間;
          (2)若a=1,k為整數(shù),且當(dāng)x>0時(shí),(x﹣k)f′(x)+x+1>0,求k的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某城市隨機(jī)抽取一年內(nèi)100 天的空氣質(zhì)量指數(shù)(AQI)的監(jiān)測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如表:

          API

          [0,50]

          (50,100]

          (100,150]

          (150,200]

          (200,300]

          >300

          空氣質(zhì)量

          優(yōu)

          輕度污染

          輕度污染

          中度污染

          重度污染

          天數(shù)

          6

          14

          18

          27

          20

          15


          (1)若本次抽取的樣本數(shù)據(jù)有30 天是在供暖季,其中有8 天為嚴(yán)重污染.根據(jù)提
          供的統(tǒng)計(jì)數(shù)據(jù),完成下面的2×2 列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該城市本年的
          空氣嚴(yán)重污染與供暖有關(guān)”?

          非重度污染

          嚴(yán)重污染

          合計(jì)

          供暖季

          非供暖季

          合計(jì)

          100


          (2)已知某企業(yè)每天的經(jīng)濟(jì)損失y(單位:元)與空氣質(zhì)量指數(shù)x 的關(guān)系式為y= 試估計(jì)該企業(yè)一個(gè)月(按30 天計(jì)算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.
          參考公式:K2=

          P(K2≥k)

          0.100

          0.050

          0.025

          0.010

          0.001

          k

          2.706

          3.841

          5.024

          6.635

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四棱錐P﹣ABCD的底面ABCD是平行四邊形,PB⊥面ABCD,BA=BD= ,AD=2,E,F(xiàn)分別是棱AD,PC的中點(diǎn).

          (1)證明:EF∥平面PAB;
          (2)若二面角P﹣AD﹣B為60°,求直線EF與平面PBC所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案