日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知以動(dòng)點(diǎn)P為圓心的圓與直線y=-相切,且與圓x2+(y-2=外切.
          (Ⅰ)求動(dòng)P的軌跡C的方程;
          (Ⅱ)若M(m,m1),N(n,n1)是C上不同兩點(diǎn),且 m2+n2=1,m+n≠0,直線L是線段MN的垂直平分線.
          (1)求直線L斜率k的取值范圍;
          (2)設(shè)橢圓E的方程為+=1(0<a<2).已知直線L與拋物線C交于A、B兩個(gè)不同點(diǎn),L與橢圓E交于P、Q兩個(gè)不同點(diǎn),設(shè)AB中點(diǎn)為R,PQ中點(diǎn)為S,若=0,求E離心率的范圍.
          【答案】分析:(Ⅰ)根據(jù)動(dòng)點(diǎn)P為圓心的圓與直線y=-相切,且與圓x2+(y-2=外切,建立方程,即可求動(dòng)P的軌跡C的方程;
          (Ⅱ)(1)求得直線L斜率,根據(jù)M,N兩點(diǎn)不同,m2+n2=1且m≠n,可得(m+n)2<2(m2+n2)=2,即可求得結(jié)論;
          (2)求出直線方程代入拋物線和橢圓方程,由=0,求得a的范圍,即可求得離心率的范圍.
          解答:解:(Ⅰ)設(shè)P(x,y),則有…(2分)
          化簡(jiǎn)得:x2=y                        …(4分)
          (II)(1)因?yàn)橹本MN的斜率為=m+n
          ∵l⊥MN,m+n≠0,∴直線L斜率k=-…(6分)
          ∵M(jìn),N兩點(diǎn)不同,m2+n2=1且m≠n,∴(m+n)2<2(m2+n2)=2
          ∴0<|m+n|<
          ∴|k|>
          ∴k<-或k>   …(8分)
          (2)l方程為:y-=k(x-),
          又m2+n2=1,m+n=-,∴l(xiāng)方程為:y=kx+1代入拋物線和橢圓方程并整理得:x2-kx-1=0①;(a+2k2)x2+4kx+2-2a=0②,易知方程①的判別式>0恒成立,方程②的判別式
          ,a>0,∴>0恒成立              …(10分)
          ∵R(),S(
          ∴由=0得-k2+a(+1)=0
          ∴a==2->2-=

          =e,∴a=2-2e2
          ∴e2
          ∴0<e<             …(14分)
          點(diǎn)評(píng):本題考查軌跡方程,考查直線與曲線的位置關(guān)系,考查向量知識(shí)的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知M是以點(diǎn)C為圓心的圓(x+1)2+y2=8上的動(dòng)點(diǎn),定點(diǎn)D(1,0).點(diǎn)P在DM上,點(diǎn)N在CM上,且滿足
          DM
          =2
          DP
          ,
          NP
          DM
          =0
          .動(dòng)點(diǎn)N的軌跡為曲線E.
          (Ⅰ)求曲線E的方程;
          (Ⅱ)線段AB是曲線E的長(zhǎng)為2的動(dòng)弦,O為坐標(biāo)原點(diǎn),求△AOB面積S的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知定點(diǎn)N(3,0)與以點(diǎn)M為圓心的圓M的方程為(x+3)2+y2=16,動(dòng)點(diǎn)P在圓M上運(yùn)動(dòng),線段PN的垂直平分線交直線MP于Q點(diǎn),則動(dòng)點(diǎn)Q的軌跡方程是
          x2
          4
          -
          y2
          5
          =1
          x2
          4
          -
          y2
          5
          =1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知以動(dòng)點(diǎn)P為圓心的圓與直線y=-
          1
          20
          相切,且與圓x2+(y-
          1
          4
          2=
          1
          25
          外切.
          (Ⅰ)求動(dòng)P的軌跡C的方程;
          (Ⅱ)若M(m,m1),N(n,n1)是C上不同兩點(diǎn),且 m2+n2=1,m+n≠0,直線L是線段MN的垂直平分線.
              (1)求直線L斜率k的取值范圍;
              (2)設(shè)橢圓E的方程為
          x2
          2
          +
          y2
          a
          =1(0<a<2).已知直線L與拋物線C交于A、B兩個(gè)不同點(diǎn),L與橢圓E交于P、Q兩個(gè)不同點(diǎn),設(shè)AB中點(diǎn)為R,PQ中點(diǎn)為S,若
          OR
          OS
          =0,求E離心率的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知圓x2+y2=25與直線l:y=-交于A、B,以大于半圓的AB上的動(dòng)點(diǎn)P為圓心與l相切的圓記為圓P,求△PAB未被圓P覆蓋部分的面積的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案