日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】為了解人們對(duì)于國(guó)家新頒布的“生育二孩放開”政策的熱度,現(xiàn)在對(duì)某市年齡在35歲的人調(diào)查,隨機(jī)選取年齡在35歲的100人進(jìn)行調(diào)查,得到他們的情況為:在55名男性中,支持生二孩的有40人,不支持生二孩的有15人;在45名女性中,支持生二孩的有20人,不支持的有25人.
          (Ⅰ)完成下面2×2列聯(lián)表,并判斷有多大的把握認(rèn)為“支持生二孩與性別有關(guān)”?

          支持生二孩

          不支持生二孩

          合計(jì)

          男性

          女性

          合計(jì)

          附:K2= ,其中n=a+b+c+d

          P(K2≥k0

          0.150

          0.100

          0.050

          0.010

          0.005

          0.001

          k0

          2.072

          2.706

          3.841

          6.635

          7.879

          10.828

          (Ⅱ)在被調(diào)查的人員中,按分層抽樣的方法從支持生二孩的人中抽取6人,再用簡(jiǎn)單隨機(jī)抽樣的方法從這6人中隨機(jī)抽取2人,求這2人中恰好有1名男性的概率;
          (Ⅲ)以上述樣本數(shù)據(jù)估計(jì)總體,從年齡在35歲人中隨機(jī)抽取3人,記這3人中支持生二孩且為男性的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

          【答案】解:(I)由已知可得:下面2×2列聯(lián)表,

          支持生二孩

          不支持生二孩

          合計(jì)

          男性

          40

          15

          55

          女性

          20

          25

          45

          合計(jì)

          60

          40

          100

          K2= ≈8.25>7.879.
          ∴有99.5%的把握認(rèn)為“支持生二孩與性別有關(guān)”.
          (II)在被調(diào)查的人員中,按分層抽樣的方法從支持生二孩的人中抽取6人,抽取的男性4人,女性2人.
          再用簡(jiǎn)單隨機(jī)抽樣的方法從這6人中隨機(jī)抽取2人,則這2人中恰好有1名男性的概率P= =
          (III)由題意可得X的可能取值為:0,1,2,3.
          X~B ,可得P(X=k)= ,可得P(X=0)= ,P(X=1)= ,P(X=2)= ,P(X=3)=
          可得:EX=3× =
          【解析】(I)由已知可得:下面2×2列聯(lián)表,計(jì)算K2= ,即可判斷出結(jié)論.(II)在被調(diào)查的人員中,按分層抽樣的方法抽取6人可得:抽取的男性4人,女性2人.再用簡(jiǎn)單隨機(jī)抽樣的方法從這6人中隨機(jī)抽取2人,則這2人中恰好有1名男性的概率P= .(III)由題意可得X的可能取值為:0,1,2,3.X~B ,可得P(X=k)=
          【考點(diǎn)精析】利用離散型隨機(jī)變量及其分布列對(duì)題目進(jìn)行判斷即可得到答案,需要熟知在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓E:x2+3y2=m2(m>0)的左頂點(diǎn)是A,左焦點(diǎn)為F,上頂點(diǎn)為B.
          (1)當(dāng)△AFB的面積為 時(shí),求m的值;
          (2)若直線l交橢圓E于M,N兩點(diǎn)(不同于A),以線段MN為直徑的圓過(guò)A點(diǎn),試探究直線l是否過(guò)定點(diǎn),若存在定點(diǎn),求出這個(gè)定點(diǎn)的坐標(biāo),若不存在定點(diǎn),請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}和{bn}滿足:對(duì)任意n∈N* , an , bn , an+1成等差數(shù)列,bn , an+1 , bn+1成等比數(shù)列,且a1=1,b1=2,a2=3.
          (Ⅰ)證明數(shù)列{ }是等差數(shù)列;
          (Ⅱ)求數(shù)列{ }前n項(xiàng)的和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)
          (1)當(dāng)a=1時(shí),x0∈[1,e]使不等式f(x0)≤m,求實(shí)數(shù)m的取值范圍;
          (2)若在區(qū)間(1,+∞)上,函數(shù)f(x)的圖象恒在直線y=2ax的下方,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 若Sm1=﹣2,Sm=0,Sm+1=3,其中m≥2,則nSn的最小值為(
          A.﹣3
          B.﹣5
          C.﹣6
          D.﹣9

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】直線y=x與函數(shù) 的圖象恰有三個(gè)公共點(diǎn),則實(shí)數(shù)m的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,曲線C1 (φ為參數(shù),實(shí)數(shù)a>0),曲線C2 (φ為參數(shù),實(shí)數(shù)b>0).在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=α(ρ≥0,0≤α≤ )與C1交于O、A兩點(diǎn),與C2交于O、B兩點(diǎn).當(dāng)α=0時(shí),|OA|=1;當(dāng)α= 時(shí),|OB|=2.
          (Ⅰ)求a,b的值;
          (Ⅱ)求2|OA|2+|OA||OB|的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為 3 的菱形,∠ABC=60°,PA⊥平面ABCD,PA=3,F(xiàn) 是棱 PA上的一個(gè)動(dòng)點(diǎn),E為PD的中點(diǎn).
          (Ⅰ)若 AF=1,求證:CE∥平面 BDF;
          (Ⅱ)若 AF=2,求平面 BDF 與平面 PCD所成的銳二面角的余弦值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案