日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】過橢圓的下頂點及左、右焦點,過橢圓的左焦點的直線與橢圓相交于兩點,線段的中垂線交軸于點且垂足為點

          )求橢圓的方程;

          )證明:當(dāng)直線斜率變化時為定值.

          【答案】;()證明見解析

          【解析】

          )橢圓的標(biāo)準(zhǔn)方程的確定應(yīng)明確其特征點(長軸、短軸的端點,焦點)的位置及特征量之間的關(guān)系;

          )圓錐曲線的定點定值問題,需要注意相關(guān)圖形與量的特征,由弦所在直線互相垂直及弦過橢圓的焦點等特征,充分利用這些特征簡化運算.

          解:()當(dāng)時,由

          當(dāng)時,由

          又圓過橢圓的下頂點及焦點,

          ,,所以,

          即橢圓的方程為

          )證明:易知直線的斜率存在,且不為0,

          所以設(shè)直線,且,,

          ,得

          ,

          設(shè)的中點,

          ,,

          的中垂線的方程為

          得,,

          ,

          ,

          因此,為定值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列的前n項和為,其中為常數(shù).

          1)求的值及數(shù)列的通項公式;

          2)記,數(shù)列的前n項和為,若不等式對任意恒成立,求實數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】202048日零時正式解除離漢通道管控,這標(biāo)志著封城76天的武漢打開城門了.在疫情防控常態(tài)下,武漢市有序復(fù)工復(fù)產(chǎn)復(fù)市,但是仍然不能麻痹大意仍然要保持警惕,嚴(yán)密防范、慎終如始.為科學(xué)合理地做好小區(qū)管理工作,結(jié)合復(fù)工復(fù)產(chǎn)復(fù)市的實際需要,某小區(qū)物業(yè)提供了AB兩種小區(qū)管理方案,為了決定選取哪種方案為小區(qū)的最終管理方案,隨機(jī)選取了4名物業(yè)人員進(jìn)行投票,物業(yè)人員投票的規(guī)則如下:①單獨投給A方案,則A方案得1分,B方案得﹣1分;②單獨投給B方案,則B方案得1分,A方案得﹣1分;③棄權(quán)或同時投票給A,B方案,則兩種方案均得0.1名物業(yè)人員的投票結(jié)束,再安排下1名物業(yè)人員投票,當(dāng)其中一種方案比另一種方案多4分或4名物業(yè)人員均已投票時,就停止投票,最后選取得分多的方案為小區(qū)的最終管理方案.假設(shè)A,B兩種方案獲得每1名物業(yè)人員投票的概率分別為.

          1)在第1名物業(yè)人員投票結(jié)束后,A方案的得分記為ξ,求ξ的分布列;

          2)求最終選取A方案為小區(qū)管理方案的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機(jī)體或者對機(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期.一研究團(tuán)隊統(tǒng)計了某地區(qū)200名患者的相關(guān)信息,得到如下表格:

          潛伏期(單位:天)

          人數(shù)

          17

          41

          62

          50

          26

          3

          1

          1)求這200名患者的潛伏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

          2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述200名患者中抽取40人得到如下列聯(lián)表.請將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為潛伏期與患者年齡有關(guān);

          潛伏期

          潛伏期

          總計

          50歲以上(含50歲)

          20

          50歲以下

          9

          總計

          40

          3)以這200名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨立.為了深入硏究,該研究團(tuán)隊在該地區(qū)隨機(jī)調(diào)查了10名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?

          附:

          0.05

          0.025

          0.010

          3.841

          5.024

          6.635

          ,其中

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)xR,實數(shù)a[0,+∞),e=2.71828…是自然對數(shù)的底數(shù),).

          (Ⅰ)若fx)≥0在xR上恒成立,求實數(shù)a的取值范圍;

          (Ⅱ)若ex≥lnx+m對任意x0恒成立,求證:實數(shù)m的最大值大于2.3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的頂點是橢圓的中心,焦點與該橢圓的右焦點重合.

          1)求拋物線的方程;

          2)已知動直線過點,交拋物線兩點,坐標(biāo)原點的中點,求證;

          3)在(2)的條件下,是否存在垂直于軸的直線被以為直徑的圓所截得的弦長恒為定值?如果存在,求出的方程;如果不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)直線與直線分別與橢圓交于點,且四邊形的面積為.

          1)求橢圓的方程;

          2)設(shè)過點的動直線與橢圓相交于兩點,是否存在經(jīng)過原點,且以為直徑的圓?若有,請求出圓的方程,若沒有,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在一個不透明的盒子中裝有4個大小、形狀、手感完全相同的小球,分別標(biāo)有數(shù)字1,2,34.現(xiàn)每次有放回地從中任意取出一個小球,直到標(biāo)有偶數(shù)的球都取到過就停止.小明用隨機(jī)模擬的方法估計恰好在第3次停止摸球的概率,利用計算機(jī)軟件產(chǎn)生隨機(jī)數(shù),每1組中有3個數(shù)字,分別表示每次摸球的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):

          131 432 123 233 234 122 332 141 312 241 122 214 431 241 141 433 223 442

          由此可以估計恰好在第3次停止摸球的概率為(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點、以軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,若直線與曲線交于、兩點.

          1)求線段的中點的直角坐標(biāo);

          2)設(shè)點是曲線上任意一點,求面積的最大值.

          查看答案和解析>>

          同步練習(xí)冊答案