日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2011•福建模擬)選修4-4:坐標(biāo)系與參數(shù)方程
          已知曲線C的極坐標(biāo)方程為ρ2=
          364cos2θ+9sin2θ
          ;
          (Ⅰ)若以極點(diǎn)為原點(diǎn),極軸所在的直線為x軸,求曲線C的直角坐標(biāo)方程.
          (Ⅱ)若P(x,y)是曲線C上的一個(gè)動(dòng)點(diǎn),求3x+4y的最大值.
          分析:(Ⅰ)先將曲線C的極坐標(biāo)方程化為4(ρcosθ)2+9(ρsinθ)2=36,利用x=ρcosθ,y=ρsinθ,即可得到曲線C的直角坐標(biāo)方程;
          (Ⅱ)利用參數(shù)法設(shè)點(diǎn)的坐標(biāo),設(shè)P(3cosθ,2sinθ),則3x+4y=9cosθ+8sinθ=
          145
          sin(θ+φ)
          ,根據(jù)sin(θ+φ)的最大值,可確定3x+4y的最大值.
          解答:解:(Ⅰ)∵曲線C的極坐標(biāo)方程為ρ2=
          36
          4cos2θ+9sin2θ
          ;
          ∴4(ρcosθ)2+9(ρsinθ)2=36
          ∵x=ρcosθ,y=ρsinθ
          ∴4x2+9y2=36
          x2
          9
          +
          y2
          4
          =1
          ;(3分)
          (Ⅱ)設(shè)P(3cosθ,2sinθ),
          則3x+4y=9cosθ+8sinθ=
          145
          sin(θ+φ)
          (6分)
          ∵θ∈R,
          ∴當(dāng)sin(θ+φ)=1時(shí),3x+4y的最大值為
          145
          (7分)
          點(diǎn)評(píng):本題以曲線的極坐標(biāo)方程為載體,考查極坐標(biāo)與直角坐標(biāo)方程的互化,考查參數(shù)法,解題的關(guān)鍵是利用x=ρcosθ,y=ρsinθ
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•福建模擬)如圖,單位圓(半徑為1的圓)的圓心O為坐標(biāo)原點(diǎn),單位圓與y軸的正半軸交與點(diǎn)A,與鈍角α的終邊OB交于點(diǎn)B(xB,yB),設(shè)∠BAO=β.
          (1)用β表示α; 
          (2)如果sinβ=
          45
          ,求點(diǎn)B(xB,yB)的坐標(biāo);
          (3)求xB-yB的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•福建模擬)已知函數(shù)f(x)=2x-2lnx
          (Ⅰ)求函數(shù)在(1,f(1))的切線方程
          (Ⅱ)求函數(shù)f(x)的極值
          (Ⅲ)對(duì)于曲線上的不同兩點(diǎn)P1(x1,y1),P2(x2,y2),如果存在曲線上的點(diǎn)Q(x0,y0),且x1<x0<x2,使得曲線在點(diǎn)Q處的切線l∥P1P2,則稱l為弦P1P2的陪伴切線.已知兩點(diǎn)A(1,f(1)),B(e,f(e)),試求弦AB的陪伴切線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•福建模擬)給出以下四個(gè)結(jié)論:
          (1)若關(guān)于x的方程x-
          1
          x
          +k=0
          在x∈(0,1)沒(méi)有實(shí)數(shù)根,則k的取值范圍是k≥2
          (2)曲線y=1+
          4-x2
          (|x|≤2)
          與直線y=k(x-2)+4有兩個(gè)交點(diǎn)時(shí),實(shí)數(shù)k的取值范圍是(
          5
          12
          ,
          3
          4
          ]

          (3)已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x-3y+1=0兩側(cè),則3b-2a>1;
          (4)若將函數(shù)f(x)=sin(2x-
          π
          3
          )
          的圖象向右平移?(?>0)個(gè)單位后變?yōu)榕己瘮?shù),則?的最小值是
          π
          12
          ,其中正確的結(jié)論是:
          (2)(3)(4)
          (2)(3)(4)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•福建模擬)如圖1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=
          12
          CD=1

          現(xiàn)以AD為一邊向形外作正方形ADEF,然后沿邊AD將正方形ADEF翻折,使平面ADEF與平面ABCD垂直,M為ED的中點(diǎn),如圖2.
          (1)求證:AM∥平面BEC;
          (2)求證:BC⊥平面BDE;
          (3)求三棱錐D-BCE的體積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案