日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】函數(shù),其中常數(shù).

          (1)求的最小值;

          (2)若,討論的零點(diǎn)的個(gè)數(shù).

          【答案】(1)-1(2)見(jiàn)解析

          【解析】

          (1) 導(dǎo)數(shù)為,研究單調(diào)性即可得到的最小值;

          (2)在其定義域上的導(dǎo)數(shù)是,對(duì)a分類(lèi)討論,數(shù)形結(jié)合即可明確的零點(diǎn)的個(gè)數(shù).

          解:(1)在定義域上的導(dǎo)數(shù)為.

          所以當(dāng)時(shí),;當(dāng)時(shí),.

          所以的單調(diào)遞減區(qū)間是,單調(diào)增區(qū)間是.

          所以的最小值是.

          (2)在其定義域上的導(dǎo)數(shù)是

          ①當(dāng)時(shí),由(1)可得上是增函數(shù),此時(shí)由,可得函數(shù)有唯一的零點(diǎn).

          ②當(dāng)時(shí),

          并且對(duì)于負(fù)數(shù),有

          又因?yàn)?/span>,所以,即

          所以在區(qū)間上存在負(fù)數(shù),使得,則在是增函數(shù);在區(qū)間是減函數(shù).則

          .所以在上,有且僅有個(gè)零點(diǎn);

          在區(qū)間上,并且是增函數(shù).

          所以存在正數(shù),使得在上,是減函數(shù);在上,是增函數(shù).于是有

          所以在上,恰有唯一的零點(diǎn).

          所以當(dāng)時(shí),上恰有三個(gè)不同的零點(diǎn).

          綜上所述,當(dāng)時(shí),有唯一的零點(diǎn);當(dāng)時(shí),有三個(gè)不同的零點(diǎn).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,為矩形,是以為直角的等腰直角三角形,平面平面

          (Ⅰ)證明:平面平面

          (Ⅱ)為直線的中點(diǎn),且,求二面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了研究學(xué)生的數(shù)學(xué)核心素養(yǎng)與抽象能力(指標(biāo))、推理能力(指標(biāo))、建模能力(指標(biāo))的相關(guān)性,將它們各自量化為1、2、3三個(gè)等級(jí),再用綜合指標(biāo)的值評(píng)定學(xué)生的數(shù)學(xué)核心素養(yǎng),若,則數(shù)學(xué)核心素養(yǎng)為一級(jí);若,則數(shù)學(xué)核心素養(yǎng)為二級(jí);若,則數(shù)學(xué)核心素養(yǎng)為三級(jí),為了了解某校學(xué)生的數(shù)學(xué)核心素養(yǎng),調(diào)查人員隨機(jī)訪問(wèn)了某校10名學(xué)生,得到如下數(shù)據(jù)

          學(xué)生編號(hào)

          (1)在這10名學(xué)生中任取兩人,求這兩人的建模能力指標(biāo)相同條件下綜合指標(biāo)值也相同的概率;

          (2)在這10名學(xué)生中任取三人,其中數(shù)學(xué)核心素養(yǎng)等級(jí)是一級(jí)的學(xué)生人數(shù)記為,求隨機(jī)變量的分布列及其數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一元線性同余方程組問(wèn)題最早可見(jiàn)于中國(guó)南北朝時(shí)期(公元世紀(jì))的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”問(wèn)題,原文如下:有物不知數(shù),三三數(shù)之剩二,五五數(shù)之剩三,問(wèn)物幾何?即,一個(gè)整數(shù)除以三余二,除以五余三,求這個(gè)整數(shù).設(shè)這個(gè)整數(shù)為,當(dāng)時(shí), 符合條件的共有_____個(gè).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD90°,ADAP4ABBC2,NAD的中點(diǎn).

          1)求異面直線PBCD所成角的余弦值;

          2)點(diǎn)M在線段PC上且滿足,直線MN與平面PBC所成角的正弦值為,求實(shí)數(shù)的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)橢圓的左焦點(diǎn)為,下頂點(diǎn)為,上頂點(diǎn)為,是等邊三角形.

          (Ⅰ)求橢圓的離心率;

          (Ⅱ)設(shè)直線,過(guò)點(diǎn)且斜率為的直線與橢圓交于點(diǎn) 異于點(diǎn),線段的垂直平分線與直線交于點(diǎn),與直線交于點(diǎn),若.

          (ⅰ)求的值;

          (ⅱ)已知點(diǎn),點(diǎn)在橢圓上,若四邊形為平行四邊形,求橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)

          (Ⅰ)當(dāng)時(shí),求在點(diǎn)處的切線方程;

          (Ⅱ)若,求函數(shù)的單調(diào)區(qū)間;

          (Ⅲ)若對(duì)任意的,上恒成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】過(guò)點(diǎn)的橢圓的離心率為,橢圓與軸交于兩點(diǎn),過(guò)點(diǎn)的直線與橢圓交于另一點(diǎn),并與軸交于點(diǎn),直線與直線交于點(diǎn).

          (1)求該橢圓的標(biāo)準(zhǔn)方程;

          (2)當(dāng)點(diǎn)異于點(diǎn)時(shí),求證:為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在下列三個(gè)正方體中,均為所在棱的中點(diǎn),過(guò)作正方體的截面.在各正方體中,直線與平面的位置關(guān)系描述正確的是

          A. 平面的有且只有①;平面的有且只有②③

          B. 平面的有且只有②;平面的有且只有①

          C. .平面的有且只有①;平面的有且只有②

          D. 平面的有且只有②;平面的有且只有③

          查看答案和解析>>

          同步練習(xí)冊(cè)答案