日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當n∈N+時,定義函數(shù)N(n)表示n的最大奇因數(shù).如N(1)=1,N(2)=1,N(3)=3,N(4)=1,N(5)=5,N(10)=5,記S(n)=N(2n-1)+N(2n-1+1)+…+N(2n-1)(n∈R+)則:(1)S(3)=
          16
          16
          ;(2)S(n)=
          4n-1
          4n-1
          分析:由題意當n∈N*時,定義函數(shù)N(n)表示n的最大奇因數(shù),利用此定義有知道N(2n)=1,當n為奇數(shù)時,N(n)=n,在從2n-1到2n-1這2n-1個數(shù)中,奇數(shù)和偶數(shù)各有2n-2個.且在這2n-2個偶數(shù)中,不同的偶數(shù)的最大奇因數(shù)一定不同,那么N(2n-1)+N(2n-1+1)+N(2n-1+2)+…+N(2n-1),利用累加法即可求得.
          解答:解:因N(2n)=1,
          當n為奇數(shù)時,N(n)=n,
          在從2n-1到2n-1這2n-1個數(shù)中,奇數(shù)有2n-2個,偶數(shù)有2n-2個.
          在這2n-2個偶數(shù)中,不同的偶數(shù)的最大奇因數(shù)一定不同,
          從2n-1到2n-1共有2n-1個數(shù),而1到2n-1共有2n-1個不同的奇數(shù),
          故有N(2n-1)=21-1=1,N(2n-1+1)=22-1=3,…,N(2n-1)=2n-1.
          那么S(n)=N(2n-1)+N(2n-1+1)+N(2n-1+2)+…+N(2n-1)
          =1+3+5+…+2n-1=
          2n-1(1+2n-1)
          2
          =4n-1
          當n=3時,S(3)=16.
          故答案為:16;4n-1
          點評:此題重點考查了學生對于新定義的準確理解,另外找準要求的和式具體的數(shù)據(jù),有觀察分析要求的和式的特點選擇累加求和,并計算中需用等比數(shù)列的求和公式,重點是了學生的理解能力及計算能力.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          (2012•順義區(qū)二模)對于定義域為A的函數(shù)f(x),如果任意的x1,x2∈A,當x1<x2時,都有f(x1)<f(x2),則稱函數(shù)f(x)是A上的嚴格增函數(shù);函數(shù)f(k)是定義在N*上,函數(shù)值也在N*中的嚴格增函數(shù),并且滿足條件f(f(k))=3k.
          (Ⅰ)判斷函數(shù)f(3x)=2×3x(x∈N)是否是N上的嚴格增函數(shù);
          (Ⅱ)證明:f(3k)=3f(k);
          (Ⅲ)是否存在正整數(shù)k,使得f(k)=2012,若存在求出k值;若不存在請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2012•順義區(qū)一模)對于定義域為A的函數(shù)f(x),如果任意的x1,x2∈A,當x1<x2時,都有f(x1)<f(x2),則稱函數(shù)f(x)是A上的嚴格增函數(shù);函數(shù)f(k)是定義在N*上,函數(shù)值也在N*中的嚴格增函數(shù),并且滿足條件f(f(k))=3k.
          (Ⅰ)證明:f(3k)=3f(k);
          (Ⅱ)求f(3k-1)(k∈N*)的值;
          (Ⅲ)是否存在p個連續(xù)的自然數(shù),使得它們的函數(shù)值依次也是連續(xù)的自然數(shù);若存在,找出所有的p值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:順義區(qū)一模 題型:解答題

          對于定義域為A的函數(shù)f(x),如果任意的x1,x2∈A,當x1<x2時,都有f(x1)<f(x2),則稱函數(shù)f(x)是A上的嚴格增函數(shù);函數(shù)f(k)是定義在N*上,函數(shù)值也在N*中的嚴格增函數(shù),并且滿足條件f(f(k))=3k.
          (Ⅰ)證明:f(3k)=3f(k);
          (Ⅱ)求f(3k-1)(k∈N*)的值;
          (Ⅲ)是否存在p個連續(xù)的自然數(shù),使得它們的函數(shù)值依次也是連續(xù)的自然數(shù);若存在,找出所有的p值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012年北京市順義區(qū)高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

          對于定義域為A的函數(shù)f(x),如果任意的x1,x2∈A,當x1<x2時,都有f(x1)<f(x2),則稱函數(shù)f(x)是A上的嚴格增函數(shù);函數(shù)f(k)是定義在N*上,函數(shù)值也在N*中的嚴格增函數(shù),并且滿足條件f(f(k))=3k.
          (Ⅰ)證明:f(3k)=3f(k);
          (Ⅱ)求f(3k-1)(k∈N*)的值;
          (Ⅲ)是否存在p個連續(xù)的自然數(shù),使得它們的函數(shù)值依次也是連續(xù)的自然數(shù);若存在,找出所有的p值,若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012年北京市順義區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

          對于定義域為A的函數(shù)f(x),如果任意的x1,x2∈A,當x1<x2時,都有f(x1)<f(x2),則稱函數(shù)f(x)是A上的嚴格增函數(shù);函數(shù)f(k)是定義在N*上,函數(shù)值也在N*中的嚴格增函數(shù),并且滿足條件f(f(k))=3k.
          (Ⅰ)證明:f(3k)=3f(k);
          (Ⅱ)求f(3k-1)(k∈N*)的值;
          (Ⅲ)是否存在p個連續(xù)的自然數(shù),使得它們的函數(shù)值依次也是連續(xù)的自然數(shù);若存在,找出所有的p值,若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案