【題目】已知是曲線
上動點以及定點
,
(1)當時,求曲線
在點
處的切線方程;
(2)求面積的最小值,并求出相應的點的坐標.
【答案】(1) ;(2)
的面積最小值為1,此時點
坐標為
.
【解析】
(1)求得導函數(shù),根據(jù)導數(shù)的幾何意義,即可求得斜率和切點坐標,根據(jù)點斜式即可寫出切線方程;
(2)由坐標即可求得直線
方程, 當點P為與
平行且且與曲線
相切的直線的切點時,
面積的最小值,根據(jù)導數(shù)的幾何意義即可求得切點,利用點到直線距離公式即可求得P到AB的距離,進而求得面積.
解: ,
,
.
(1)當,
,
,即切點為
,切線方程為
,化簡得:
.
(2)直線的方程為:
,設與
平行且與曲線
相切的直線為
即
,解得:
,則切點為
,即點
坐標為
時,
的面積最小,
,
到直線
:
的距離為
,所以
.
科目:高中數(shù)學 來源: 題型:
【題目】近年來,隨著我市經(jīng)濟的快速發(fā)展,政府對民生越來越關注市區(qū)現(xiàn)有一塊近似正三角形的土地(如圖所示),其邊長為2百米,為了滿足市民的休閑需求,市政府擬在三個頂點處分別修建扇形廣場,即扇形
和
,其中
與
、
分別相切于點
,且
與
無重疊,剩余部分(陰影部分)種植草坪.設
長為
(單位:百米),草坪面積為
(單位:萬平方米).
(1)試用分別表示扇形
和
的面積,并寫出
的取值范圍;
(2)當為何值時,草坪面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是一幾何體的平面展開圖,其中四邊形為正方形,
分別為
的中點.在此幾何體中,給出下列結論,其中正確的結論是( )
A.平面平面
B.直線
平面
C.直線平面
D.直線
平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直三棱柱ABCA1B1C1中(側棱與底面垂直的棱柱),AC=BC=1,∠ACB=90°,AA1=,D 是A1B1的中點.
(1)求證:C1D⊥平面AA1B1B;
(2)當點F 在BB1上的什么位置時,AB1⊥平面C1DF ?并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,PA垂直于⊙O所在的平面,M為圓周上任意一點,AN⊥PM,N為垂足.
(1)求證:AN⊥平面PBM;
(2)若AQ⊥PB,垂足為Q,求證:NQ⊥PB.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學高二年級組織外出參加學業(yè)水平考試,出行方式為:乘坐學校定制公交或自行打車前往,大數(shù)據(jù)分析顯示,當的學生選擇自行打車,自行打車的平均時間為
(單位:分鐘) ,而乘坐定制公交的平均時間不受
影響,恒為40分鐘,試根據(jù)上述分析結果回答下列問題:
(1)當在什么范圍內時,乘坐定制公交的平均時間少于自行打車的平均時間?
(2)求該校學生參加考試平均時間的表達式:討論
的單調性,并說明其實際意義.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線l的參數(shù)方程為(其中t為參數(shù)),現(xiàn)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρ=4sinθ.
(Ⅰ)寫出直線l和曲線C的普通方程;
(Ⅱ)已知點P為曲線C上的動點,求P到直線l的距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com