日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在正方體ABCD-A1B1C1D1中,點(diǎn)M為面ABB1A1的中心,則MC1與面BB1C1C所成角的正切值等于( 。
          A、
          6
          6
          B、
          5
          5
          C、
          3
          3
          D、
          2
          2
          分析:過(guò)M作MN⊥BB1,垂足為N,連接NC1,根據(jù)正方體的幾何特征易得∠MC1N即為MC1與面BB1C1C所成角,解三角形MC1N,即可得到MC1與面BB1C1C所成角的正切值.
          解答:解:過(guò)M作MN⊥BB1,垂足為N,連接NC1,
          則MN⊥面BB1C1C
          ∠MC1N即為MC1與面BB1C1C所成角
          設(shè)正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,在△MC1N中,
          ∵M(jìn)N=1,C1N=
          5

          ∴tan∠MC1N=
          5
          5

          故選B
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是直線(xiàn)與平面所成的角,其中根據(jù)正方體的幾何特征,構(gòu)造出直線(xiàn)與平面所成的角的平面角是解答本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          16、在正方體ABCD-A′B′C′D′中,過(guò)對(duì)角線(xiàn)BD′的一個(gè)平面交AA′于E,交CC′于F,則
          ①四邊形BFD′E一定是平行四邊形;
          ②四邊形BFD′E有可能是正方形;
          ③四邊形BFD′E在底面ABCD內(nèi)的投影一定是正方形;
          ④平面BFD′E有可能垂直于平面BB′D.
          以上結(jié)論正確的為
          ①③④
          .(寫(xiě)出所有正確結(jié)論的編號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在正方體ABCD-A′B′C′D′中,E為D′C′的中點(diǎn),則二面角E-AB-C的大小為
          45°
          45°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在正方體ABCD-A′B′C′D′中,E,F(xiàn)分別是AB′,BC′的中點(diǎn). 
          (1)若M為BB′的中點(diǎn),證明:平面EMF∥平面ABCD.
          (2)求異面直線(xiàn)EF與AD′所成的角.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖在正方體ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H為垂足,則B1H與平面AD1C的位置關(guān)系是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在正方體ABCD-A′B′C′D′中,過(guò)對(duì)角線(xiàn)BD′的一個(gè)平面交棱AA′于E,交棱CC′于F,則:
          ①四邊形BFD′E一定是平行四邊形;
          ②四邊形BFD′E有可能是正方形;
          ③四邊形BFD′E有可能是菱形;
          ④四邊形BFD′E有可能垂直于平面BB′D.
          其中所有正確結(jié)論的序號(hào)是
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案