日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 函數(shù)f(x)=x2+mx+2(x∈R)在(2,+∞)上單調(diào)遞增,則實(shí)數(shù)m的取值范圍是( 。
          A、[-4,+∞)B、(-4,+∞)C、(-∞,-4]D、(-∞,-4)
          分析:先將函數(shù)y=x2+mx+2轉(zhuǎn)化為:y=(x+
          1
          2
          m)2+2-
          1
          4
          m2明確其對(duì)稱軸,再由函數(shù)在(2,+∞]上單調(diào)遞增,則對(duì)稱軸在區(qū)間的左側(cè)求解.
          解答:解:函數(shù)y=(x+
          1
          2
          m)2+2-
          1
          4
          m2
          ∴其對(duì)稱軸為:x=-
          1
          2
          m
          又∵函數(shù)在(2,+∞]上單調(diào)遞增
          ∴-
          1
          2
          m≤2.
          ∴m≥-4
          故選A.
          點(diǎn)評(píng):本題主要考查二次函數(shù)的性質(zhì),涉及了二次函數(shù)的對(duì)稱性和單調(diào)性,在研究二次函數(shù)單調(diào)性時(shí),一定要明確開(kāi)口方向和對(duì)稱軸.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=x2-ax+4+2lnx
          (I)當(dāng)a=5時(shí),求f(x)的單調(diào)遞減函數(shù);
          (Ⅱ)設(shè)直線l是曲線y=f(x)的切線,若l的斜率存在最小值-2,求a的值,并求取得最小斜率時(shí)切線l的方程;
          (Ⅲ)若f(x)分別在x1、x2(x1≠x2)處取得極值,求證:f(x1)+f(x2)<2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          函數(shù)f(x)=x2+2x在[m,n]上的值域是[-1,3],則m+n所成的集合是(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知二次函數(shù)f(x)=x2-2x-3的圖象為曲線C,點(diǎn)P(0,-3).
          (1)求過(guò)點(diǎn)P且與曲線C相切的直線的斜率;
          (2)求函數(shù)g(x)=f(x2)的單調(diào)遞增區(qū)間.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          函數(shù)f(x)=-x2+2x,x∈(0,3]的值域?yàn)?!--BA-->
          [-3,1]
          [-3,1]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)函數(shù)f(x)=x2+
          12
          x
          +lnx的導(dǎo)函數(shù)為f′(x),則f′(2)=
          5
          5

          查看答案和解析>>

          同步練習(xí)冊(cè)答案