日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 過(guò)點(diǎn)(-4,0)作直線l與圓x2+y2+2x-4y-20=0交于A、B兩點(diǎn),如果|AB|=8,則直線l的方程為(  )
          A、5x+12y+20=0B、5x-2y+20=0C、5x+12y+20=0或x+4=0D、5x-2y+20=0或x+4=0
          分析:化圓的一般方程為標(biāo)準(zhǔn)方程,求出圓心坐標(biāo)和半徑,結(jié)合弦長(zhǎng)等于8求出弦心距,分直線l的斜率存在和不存在兩種情況討論,當(dāng)斜率存在時(shí)利用點(diǎn)到直線的距離公式列式求出斜率,則答案可求.
          解答:解:由圓x2+y2+2x-4y-20=0,
          化為標(biāo)準(zhǔn)方程為(x+1)2+(y-2)2=25.
          ∴圓的圓心M(-1,2),半徑為5,又直線l被圓截得的弦長(zhǎng)|AB|=8,
          ∴圓心到直線l的距離d=
          52-42
          =3

          當(dāng)過(guò)點(diǎn)(-4,0)的直線斜率不存在時(shí),直線方程為x+4=0,滿足條件;
          當(dāng)斜率存在時(shí),設(shè)直線方程為y=k(x+4),
          即kx-y+4k=0.
          由圓心到直線的距離d=
          |-k-2+4k|
          k2+1
          =3
          ,
          解得:k=-
          5
          12

          直線l的方程為-
          5
          12
          x-y+4×(-
          5
          12
          )=0

          即5x+12y+20=0.
          綜上,所求直線方程為5x+12y+20=0或x+4=0.
          故選:C.
          點(diǎn)評(píng):本題考查了直線與圓的位置關(guān)系,考查了點(diǎn)到直線的距離公式,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,是中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•淮南二模)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1,(a>b>0)與雙曲4x2-
          4
          3
          y2=1有相同的焦點(diǎn),且橢C的離心e=
          1
          2
          ,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
          (1)求橢圓的方程;
          (2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
          (3)求點(diǎn)P在直線MB上射R的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省淮北市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

          已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
          (1)求橢圓的方程;
          (2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
          (3)求點(diǎn)P在直線MB上射R的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省淮南市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

          已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
          (1)求橢圓的方程;
          (2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
          (3)求點(diǎn)P在直線MB上射R的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省淮北市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

          已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
          (1)求橢圓的方程;
          (2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
          (3)求點(diǎn)P在直線MB上射R的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2013屆山西省晉商四校高二下學(xué)期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

          已知直三棱柱中, , , 的交點(diǎn), 若.

          (1)求的長(zhǎng);  (2)求點(diǎn)到平面的距離;

          (3)求二面角的平面角的正弦值的大小.

          【解析】本試題主要考查了距離和角的求解運(yùn)用。第一問(wèn)中,利用ACCA為正方形, AC=3

          第二問(wèn)中,利用面BBCC內(nèi)作CDBC, 則CD就是點(diǎn)C平面ABC的距離CD=,第三問(wèn)中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為

          解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 ……………  5分

          (2)在面BBCC內(nèi)作CDBC, 則CD就是點(diǎn)C平面ABC的距離CD= … 8分

          (3) 易得AC面ACB, 過(guò)E作EHAB于H, 連HC, 則HCAB

          CHE為二面角C-AB-C的平面角. ………  9分

          sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分

          解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標(biāo)系, 設(shè)|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

          =(2, -, -), =(0, -3, -h(huán))  ……… 4分

          ·=0,  h=3

          (2)設(shè)平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)

          點(diǎn)A到平面ABC的距離為H=||=……… 8分

          (3) 設(shè)平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)

          二面角C-AB-C的大小滿足cos== ………  11分

          二面角C-AB-C的平面角的正弦大小為

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案